
STREAMLINE ™

Software

Reference Documents



STREAMLINE ™

SOFTWARE

Reference

Documents



Document No. 500 080-001
June, 1994 Introduction

General This manual describes the format and syntax of the text file that describes the
relationship between a Host logic and a Classic I/O subsystem.

This manual is divided into the following sections.

Section Description

CC Interface Overview

(page 3)

This section describes the functionality,
requirements, and operation of the CC
Interface.

CCF File

(page 7)

This section describes the relationship
between the Classic I/O system and the
CRISP® logic database.

CCF File Compilation

(page 13)

This section describes compilation and error
messages.

Function Calls

(page 17)

This section describes the three logic calls
which form the interface to CC Servers.

________________________________ © 1994 Square D  All Rights Reserved __________________________ Page 1



Introduction
Document No.  500 080-001

June, 1994

Notes:

Page 2 _________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No. 500 080-001
June, 1994 CC Interface Overview

General The purpose of the CC Interface (CRISP®/32 to Classic I/O Subsystem
Interface) is to provide a method of connecting CRISP Classic I/O to
CRISP/32 systems via an Ethernet LAN.  This product is complimentary to the
locally connected Classic I/O interface.  CRISP Classic I/O was originally used
with systems based on one of the several models of the PDP-11 computer.
With this interface, existing CRISP customers using CRISP/16 or DRM
computers may upgrade to VAX computers using CRISP/32.

The CC Interface system consists of the following items:

• A Classic I/O system with either the two-bus or three-bus
configuration.

 • The CC Server Backplane Assembly which will Accommodate a single or 
dual CC Server Module.

 • One or more CC Servers which are the intelligent devices that perform the
actual I/O operations and communications to and from the host CPU(s).

 • A single or dual CPU CRISP/32 system.

• CRISP/32 software, Version 3.0-10 or later.

 • A single or dual Ethernet network connecting the CC Servers to the host 
CPU(s).

The CC Server module is based on the microprocessor hardware and software
used in the CRISP I/ONYX® Module Server.  An Parallel Interface board in
the CC Server connects to the ABUS, DBUSI and DBUSO cables of the Classic
I/O cabinets.

CC Servers may be installed as single or dual on the CC Server Backplane
Assembly.  The dual configuration provides the capability of automatic
switchover of CC Servers in case of server or communications failure.

The Classic I/O cabinets and cabling are configured in the same way as
currently used with a CRISP/16 or DRM system.  Cable length limitations and
termination requirements are the same.

The CC Interface may be simultaneously operated in the same VAX system
with the following CRISP I/O interface products:

    • I/ONYX®
    • Locally connected Classic I/O
    • IDI

CPU Requirements Any VAX computer configured to run CRISP/32 may be used to connect to
Classic I/O using the CC Interface.  The CRISP/32 system may be a single or
dual computer.  A dual computer system may use the Q-bus Arbiter board or
the Serial Arbitration unit for switchover control.  (The serial unit allows the
use of busless computers such as the MicroVAX 3100 Model 90.)

________________________________ © 1994 Square D  All Rights Reserved __________________________ Page 3



CC Interface Overview
Document No.  500 080-001

June, 1994

Ethernet Requirements Any valid Ethernet configuration may be used to connect the VAX host
computers running CRISP/32 to the CC Server(s).  This may include bridges
and repeaters but not routers because the CC Interface system uses IEEE
802.3 messages which are not routable.

Classic I/O Hardware The Classic I/O hardware beyond the CC Server must conform to the rules for
cable length and card loading that have always applied to Classic I/O.

The CC Interface supports the following:

  • Digital inputs using CR486 panels with momentary pushbutton latching
 • Digital outputs using CR194 or CR587 panels
 • Analog inputs using CR786 panels
  • Analog outputs using CR587 panels
  • Pulse inputs using CR486 panels in the 8-bit or 4-bit counter mode

    The CC server interface does NOT support the following:

  • Analog inputs using CR188 panels
 • Pulse outputs (CR272 cards)
  • Motor start staggering
  • Smoothing of analog input values

    Any of the Classic I/O simulator panels may be in the configuration.

I/O Configuration File The user specifies the connection between the Classic I/O system and the
CRISP/32 system with a configuration file for each CRISP/32 logic that is to
perform I/O functions to the Classic I/O system.

    Each CRISP/32 logic may perform I/O to up to eight CC Server pairs, each
connected to its own Classic I/O system.

Logic Calls The following CRISP/32 logic calls are provided:

 • Read input data from the Classic I/O system

  • Write output data to the Classic I/O system

   • Read the current status of the CC Interface system

Operation When the first logic call to read input data is executed, the compiled
configuration file for that logic is read.  The appropriate data structures are
built and the specified CC Servers are downloaded with the required structures
needed to perform scanning of the Classic I/O system.  On every successive
logic call to read input data, each specified CC Server is polled to obtain the
current input tables scanned from the Classic I/O system and these tables are
transferred to the CRISP/32 logic database.

    On each logic call to write output data, the data from the CRISP/32 logic
database is transferred to output tables and sent to the specified CC Servers for
subsequent copying to the Classic I/O system.

Page 4 _________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No.  500 080-001
June, 1994 CC Interface Overview

Operation (cont)

    If the CC Server Backplane Assembly is configured as a dual unit, an
interconnecting cable and hardware logic causes one of the CC Servers to be
designated as active and one as idle.  The active  unit performs the actual
scanning of the Classic I/O system and communicates the data to the host
VAX computer running CRISP/32.  If the active CC Server fails or
communications is lost to the host computers, the pair will switch over and the
previously idle CC  server will become active.  As in CRISP/16, a switchover of
the device that is scanning the Classic I/O system may cause loss of pulse input
totalization or normally closed contact latching.

    A monitor program in the host CRISP/32 system continuously polls both of
the CC Servers and insures that the idle CC Server is always available for use if
necessary.  This monitor program also reports all changes in the CC Server
state to the CRISP$TT: device.

________________________________ © 1994 Square D  All Rights Reserved __________________________ Page 5



CC Interface Overview
Document No.  500 080-001

June, 1994

Notes:

Page 6 _________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No. 500 080-001
June, 1994 CCF File

General The CCF file defines the relationship between the Classic I/O system and the
CRISP logic database.  Each logic that uses the CC Interface requires one of
these files.  These files are named CRISP$CFG:dbname.CCF. See the section
CCF File Compilation later in this manual for more information about CCF
file processing.

All error messages associated with the Classic I/O run-time system are sent to
the standard CRISP error handler and are date-time stamped.

The general .CCF format rules are as follows:

• The .CCF file is an RMS sequential variable file suitable for
editing with TPU or other editor.

• Each line is a logical entity without relationship to any
other line.

• Comment lines may be placed anywhere and start with
exclamation point.

• There are 7 types of definition lines:

ESERVER - even-numbered CC Server
OSERVER - odd-numbered CC Server
INPUT - digital input points
OUTPUT - digital output points
ANAIN - analog input points
ANAOUT - analog output points
PLSIN4, PLSIN8 - pulse input points

• A definition line consists of a keyword followed by a space
followed by one or more parameters separated by spaces.

• All parameters are position dependent and all must be specified. There are
no default values.  For timeout values, a specified value of zero will have 
defaults in the CC Server.

• Pulse input types may be specified as 4-bit counters or 8-bit counters but 
not both for the same CC Server or Server pair.

• Each ESERVER keyword declares the creation of a new CCDB to perform
independent I/O in the specified CC Server.  There may be no more than 
8 such declarations for a single logic.

• Each I/O type may be specified only once per CCDB.  Up to 8 CCDB's 
may be specified in a single .CCF file.

NOTE

Comments in the dbname.CCF file are preceded by an
exclamation point (! comment) .

________________________________ © 1994 Square D  All Rights Reserved __________________________ Page 7



CCF File
Document No.  500 080-001

June, 1994

Definition Lines Definition lines in the CCF file have syntax as follows.

NOTE

For variable declarations, the variable name must be
enclosed in quotation marks ("START_VAR") .

ESERVER Defines a CC Server to be used for this logic and create the CCDB for it.

ESERVER  addr  net  auto_enable  scan_time  timeout_time  clear_tmo_cnt

Where:

addr The Ethernet address of the desired CC Server in 
the hexadecimal dashed form 02-00-2B-01-mm-
nn.  The value "mm" is normally 00, but another 
value may be set in the CC Server at the factory.  
The low byte value "nn" is determined by the 
switches on the CC Server and must be an even 
value.  If there are two CC Servers, they must have
even/odd addresses.

net The network number to use (0 to the highest 
network number available as determined by the 
CRISP$NET* logical names).

auto_enable The AUTO_ENABLE keyword indicates whether the
software should automatically enable a pair of CC
Servers after being disabled.  The choices are 
AUTO_ENABLE or NOAUTO_ENABLE.

scan_time The time in milliseconds between successive I/O 
bus scan cycles (normally set to 100 ms).  The 
maximum value is 65535.

timeout_time The time in of ms for the host to wait for response
from this CC Server pair.  The maximum value is 
65535.

clear_tmo_cnt The number of scan_time intervals that the CC 
Server will wait for lack of I/O read and write 
messages before asserting the failsafe value 
(CLEAR).  This value is specified in SCAN_TIME 
counts.  This value is also used for disabling and 
marking a CCDB as "ready for removal" when no 
more I/O-type messages have been received by the
CC Server.  The failsafe value is asserted after 
SCAN_TIME*CLEAR_TMO_CNT milliseconds 
(normally a CLEAR_TMO_CNT set to 50 counts; 
default failsafe is 100ms* 50 or 5 seconds).  The 
maximum value is 65535.

Page 8 _________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No.  500 080-001
June, 1994 CCF File

ESERVER (cont)

The following default values are assumed if zero is specified:

scan_time  100 ms
timeout_time 50  ms
clear_tmo_cnt 50 counts.

OSERVER Defines a second CC Server to define a dual pair.

OSERVER  net

Where:

net The network number to use (0 to the highest 
network number available as determined by the 
CRISP$NET* logical names).

Note that the Ethernet address of this odd CC Server is the above
specified even CC Server address with the low order bit set to one.

INPUT Defines the digital input array.

INPUT  "start_var"  start_addr  number_of_points

Where:

"start_var" The first CRISP LOGICAL  variable; it receives the 
first digital input point.  This must be the first 
element of an array or list of CRISP LOGICAL  
variables of size NUMBER_OF_POINTS.

start_addr The first Classic I/O mux address to be used to 
read the physical input points.  This value is 
expressed in octal notation.  Due to the hardware 
addressing method, this value must be between 0 
and 17740 (octal) and must be a multiple of 40.

number_of_points The number of digital input points to be read.  
This value must be a multiple of 16 as the digital 
input hardware can only be read in groups of 16 
points.

OUTPUT Defines the digital output array.

OUTPUT  "start_var"  start_addr  number_of_points

    Where:

"start_var" The first CRISP LOGICAL  variable; it contains the 
first digital output point.  This must be the first 
element of an array or list of CRISP LOGICAL  
variables of size NUMBER_OF_POINTS.

________________________________ © 1994 Square D  All Rights Reserved __________________________ Page 9



CCF File
Document No.  500 080-001

June, 1994

OUTPUT (cont)

start_addr The first Classic I/O mux address to be used to 
write the physical output points.  This value is 
expressed in octal notation.  Due to the hardware 
addressing method, this value must be between 0 
and 17740 (octal) and must be a multiple of 40.

number_of_points The number of digital output points to be written.
This value must be a multiple of 16 as the digital 
output hardware can only be written in groups of 
16 points.

ANAIN Defines the analog input array.

ANAIN  "start_var"  start_addr  number_of_points

    Where:

"start_var" The first CRISP NUMERIC or LONGWORD 
variable; it receives the first analog input point.  
This must be the first element of an array or list of
CRISP NUMERIC or LONGWORD variables of size 
NUMBER_OF_POINTS.  Analog values from the 
hardware are signed 16-bit quantities.  These are 
copied to CRISP NUMERIC variables or sign 
extended to 32-bit LONGWORD variables.

start_addr The first Classic I/O mux address to be used to 
read the physical input points.  This value is 
expressed in octal notation.  Due to the hardware 
addressing method, this value must be between 0 
and 17740 (octal) and must be a multiple of 40.

number_of_points The number of analog input points to be read.

ANAOUT Defines the analog output array.

ANAOUT  "start_var"  start_addr  number_of_points

    Where:

"start_var" The first CRISP NUMERIC or LONGWORD 
variable; it contains the first analog output point 
value.  This must be the first element of an array 
or list of CRISP NUMERIC or LONGWORD 
variables of size NUMBER_OF_POINTS.  Analog 
values to the hardware are signed 16-bit quantities.
The signed 16-bit NUMERIC variables are copied 
to the hardware, the values of the signed 32-bit 
LONGWORD variables are truncated to 16-bit 
values and copied to the hardware.

Page 10 ________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No.  500 080-001
June, 1994 CCF File

ANAOUT (cont)
start_addr The first Classic I/O mux address to be used to 

write the physical output points.  This value is 
expressed in octal notation.  Due to the hardware 
addressing method, this value must be between 0 
and 17740 (octal) and must be a multiple of 40.

number_of_points The number of analog output points to be written.

PLSIN4 Defines the 4-bit pulse counter input array.

PLSIN4  "start_var"  start_addr  number_of_points

    Where:

"start_var" The first CRISP NUMERIC or LONGWORD 
variable; it receives the first 4-bit pulse counter 
input point.  This must be the first element of an 
array or list of CRISP NUMERIC or LONGWORD 
variables of size NUMBER_OF_POINTS.  These 
CRISP variables receive the pulse totalizations for 
their respective input points.  For a scan time of 
100 ms, the maximum pulse frequency is 150 pps,
otherwise pulses will be lost.

start_addr The first Classic I/O mux address to be used to 
read the physical input points.  This value is 
expressed in octal notation.  Due to the hardware 
addressing method, this value must be between 0 
and 17740 (octal) and must be a multiple of 40.

number_of_points The number of 4-bit pulse counter input points to
be read.  This value must be a multiple of 4 as the
4-bit pulse counter hardware can only be read in 
groups of 4 points.

PLSIN8 Define the 8-bit pulse counter input array.

PLSIN8  "start_var"  start_addr  number_of_points

    Where:

"start_var" The first CRISP NUMERIC or LONGWORD 
variable; it receives the first 8-bit pulse counter 
input point.  This must be the first element of an 
array or list of CRISP NUMERIC or LONGWORD 
variables of size NUMBER_OF_POINTS.  These 
CRISP variables receive the pulse totalizations for 
their respective input points.  For a scan time of 
100 ms, the maximum pulse frequency is 2550 
pps, otherwise pulses will be lost.

________________________________ © 1994 Square D  All Rights Reserved _________________________ Page 11



CCF File
Document No.  500 080-001

June, 1994

PLSIN8 (cont)
start_addr The first Classic I/O mux address to be used to 

read the physical input points.  This value is 
expressed in octal notation.  Due to the hardware 
addressing method, this value must be between 0 
and 17740 (octal) and must be a multiple of 40.

number_of_points The number of 8-bit pulse counter input points to
be read.  This value must be a multiple of 2 as the
8-bit pulse counter hardware can only be read in 
groups of 2 points.

Page 12 ________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No. 500 080-001
June, 1994 CCF File Compilation

General In order to be used by the CCIO routines, the ASCII CCF file must first be
compiled.  This also provides immediate error checking of the configuration
in that file.  The CCF file must be put in the directory accessed via the
CRISP$CFG logical name.  The command to compile the CCF file TEST
would be as shown below.

$ CCC TEST

where:

CRISP$CFG:TEST.CCF is the ASCII (input) CCF file and
CRISP$CFG:TEST.CFDAT is the compiled (output) file.

The compiled configuration file is then automatically read the first time the
logic program TEST executes the CCREAD call.  If a logic calls CCREAD and
there is no corresponding .CFDAT file, then the logic will complain once on
the CRISP$TT device and continue without any I/O to the Classic I/O
subsystem.  In this case, all status variables passed to the CCSTAT call will
indicate the No CC Server defined state.

When a .CFDAT file is read by CCREAD, a global section dbname_CCDB is
created and filled from the contents of the file.  The appropriate
configuration information is later sent to the CC Server to define the hardware
configuration and communications parameters as originally declared in the
.CCF file.

If CCC detects an error in the CCF file, a message will be displayed indicating
the problem and the line where the error is detected.  No new .CFDAT file will
be created, but the previous file(s) will remain on the disk.

Error Messages The possible error messages and their meaning is shown below.  In the sample
messages, XXX is the CCF filename, NN is the line number within that file, and
(ARG) is the name of the definition argument in which the error was found.
Where applicable, the problem line or additional information will be displayed
beneath the error message.

CCF file XXX error: CANNOT OPEN INPUT FILE

CCC was unable to open the indicated CCF file.  Only the filename
should be specified on the command line; do not enter CRISP$CFG: or .CCF.
The file must reside in the CRISP$CFG: directory.

CCF file XXX error: CANNOT CREATE OUTPUT FILE

CCC was unable to create the compiled output file.  Check that there is
available space on the disk on which CRISP has been installed using the
command SHOW DEVICE CRISP$:.

CCF file XXX error: CANNOT CLOSE OUTPUT FILE

CCC was unable to close the compiled output file.  Check for problems on the
disk on which CRISP has been installed.

________________________________ © 1994 Square D  All Rights Reserved _________________________ Page 13



CCF File Compilation
Document No.  500 080-001

June, 1994

Error Messages (cont)

CCF file XXX error at line NN: INVALID DEFINITION COMMAND

The command keyword in the indicated definition line is not a valid CCC
command.  Correct the statement and recompile.  If the line was intended to
be a comment, make sure it begins with an exclamation point (!).

CCF file XXX error at line NN: MISSING ESERVER SPECIFICATION

The first non-comment line in a CCF file must be an ESERVER definition.
Each additional ESERVER definition line begins the configuration of a new
I/O cluster (CCDB).

CCF file XXX error at line NN: DUPLICATE SECTION

There can only be one of an OSERVER or I/O type definition per CCDB.
Remove the extra line(s) between ESERVER definition lines.

CCF file XXX error at line NN: MISSING OR INVALID PARAMETER(S)

The indicated definition line is missing one or more required arguments.
This can also occur if a CRISP variable array reference is not enclosed in
double quotes (").  Check the definition syntax elsewhere in this manual and
make sure that all values are supplied correctly.

CCF file XXX error at line NN (ARG): MISSING OR INVALID PARAMETER(S)

The indicated argument of the indicated line has an illegal character such as
an alphabetic character in a numeric argument.  Check the definition syntax
elsewhere in this manual and make sure that a valid value is supplied.

CCF file XXX error at line NN (ARG): INVALID VALUE

The indicated argument of the indicated line has an illegal character such as
an 8 or 9 in a start address.  Check the definition syntax elsewhere in this
manual and make sure that a valid value is supplied.

CCF file XXX error at line NN (ARG): VALUE OUT OF RANGE

The indicated argument of the indicated line has a value that is outside the
allowable range.  For string arguments such as the variable name, this means
that the string is too long.  Check the definition syntax elsewhere in this
manual and make sure that a valid value is supplied.

Page 14 ________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No.  500 080-001
June, 1994 CCF File Compilation

Error Messages (cont)

CCF file XXX error at line NN (ARG): INVALID MULTIPLE

The indicated definition argument of the indicated line has an value that is not
an exact multiple of a required value (i.e., it is not a multiple or 2 or 16 or
whatever).  Check the definition syntax elsewhere in this manual and make
sure that a valid value is supplied.

CCF file XXX error at line NN: INVALID NETWORK NUMBER

The network number in the ESERVER or OSERVER definition must be an
integer value between 0 and the highest available network number on your
system.  For systems with dual Ethernets, the network number must be either 0
or 1.  You can check the number of available networks with the command
SHOW LOGICAL CRISP$NET*.

________________________________ © 1994 Square D  All Rights Reserved _________________________ Page 15



CCF File Compilation
Document No.  500 080-001

June, 1994

Notes:

Page 16 ________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No. 500 080-001
June, 1994 Function Calls

General The two CRISP logic calls CCREAD and CCWRITE cause the logic to perform
I/O operations to the specified CC Servers as declared in the .CCF file
dbname.CCF.  The CRISP logic call CCSTAT returns the communications
status of the CC Servers used with this logic.

The CCREAD call performs the input functions (digital inputs, analog input,
pulse inputs) and the CCWRITE call performs the output functions (digital
output, analog output).

It is recommended that the CCREAD call be placed near the beginning of the
logic and the CCWRITE call be placed near the end of the logic.

RECALL; CCREAD, conditional, VALID1, VALID2, VALID3, ...

VALIDn are CRISP logical variables, one for each CCDB specified in the
.CCF file for this logic / database.  The VALIDn value is true if a complete set
of input data was received from the corresponding CC Server.

RECALL; CCWRITE, conditional,

RECALL; CCSTAT, conditional, STAT1, STAT2, STAT3, ...

The returned status values are copied from the status word of the
corresponding CCDB.  If the call specifies more STATn variables than there
are CCDBs, then the trailing STATn variables are filled with the "no CC Server
defined" flag.  If there are not enough STATn words for the number of
CCDBs, they are filled to the end of the argument list.

Refer to the following Function Calls for more detail on the call syntax.

CCREAD CCREAD is called by the logic to do a scan of the CC Servers.

Format [RE]CALL; CCREAD, expr, validn, . . .

Arguments validn Usage: The n th valid bit is set to TRUE if the input 
point read completed without error, Else it is 
set to FALSE.

Type: LOGICAL.
Access: Write only.

Operation On each pass, CCREAD checks initialization, checks the status of the network,
verifies that CCDBs are up to date and sequences through the CCDB list
sending a message to each CC server and waiting for a response.

If the response indicates that valid data has been received, it sprays that data
into the logic database and sets the corresponding VALIDn bit.

Example

RECALL; CCREAD , , VALID1, VALID2

________________________________ © 1994 Square D  All Rights Reserved _________________________ Page 17



Function Calls
Document No.  500 080-001

June, 1994

CCSTAT CCSTAT is called by the logic to return status of CC Servers.

Format [RE]CALL; ccstat, , statn, . . .

Arguments statn Usage: The n th status longword is copied from the 
status longword in the nth CCDB structure as 
defined by the .CCF file.

Type: LONGWORD.
Access: Write only.

Operation On each call, CCSTAT copies the status longword from the successive
CCDBs and returns that longword to logic.  The bits in the status
longword are encoded as follows:

bit num mask  use
0          1     Output data valid, one pass of logic has occurred
1          2     At least one physical I/O scan has occurred
2          4     Analog input data is valid
3          8     Digital input data is valid (at least one physical 

scan since the last CCREAD call)
4        16     Pulse input data is valid
5       32     CC server pair is "disabled"

10    1024     CC server not defined, .CCF file entry missing

Example

RECALL; CCSTAT, , SRVSTAT1, SRVSTAT2

Page 18 ________________________© 1994 Square D  All Rights Reserved ________________________________________



Document No.  500 080-001
June, 1994 Function Calls

CCWRITE CCWRITE is called by the logic to send outputs to the CC Servers.

Format [RE]CALL; CCWRITE, ,

Arguments NONE

Operation On each pass, CCWRITE checks initialization, checks the status of the
network, verifies that CCDBs are up to date and sequences through the
CCDB list sending the output data to each CC server in the list.

Example

RECALL; CCWRITE, ,

________________________________ © 1994 Square D  All Rights Reserved _________________________ Page 19



Function Calls
Document No.  500 080-001

June, 1994

Notes:

Page 20 ________________________© 1994 Square D  All Rights Reserved ________________________________________


	Title
	Introduction
	General

	CC Interface Overview
	General
	Operation

	CCF File
	General
	Definition Lines

	CCF File Compilation
	General
	Error Messages

	Function Calls
	General
	CCREAD
	CCSTAT
	CCWRITE


