
CRISP®

Datagate

User's

Guide

CRISP®

Datagate User's Guide

Copyright© 1990 by
Square D Company
5160 Paul G. Blazer Memorial Parkway
Dublin, Ohio 43017
USA

All rights reserved including the right of reproduction
in whole or in part in any form.

CRISP® is a registered trademark of Square D Company

I/ONYX® is a registered trademark of Square D Company

Dedicated to Growth
Committed to Quality

Copyright© 1990 by
Square D Company
5160 Paul G. Blazer Memorial Parkway
Dublin, Ohio 43017
USA

(614) 764-4200

CRISP®

Datagate User's Guide

Dedicated to Growth
Committed to Quality

Datagate

User's

Guide

ii

Copyright 1990 by
Square D Company
5160 Paul G. Blazer Memorial Parkway
Dublin, Ohio 43017
USA

WARNING: Any unauthorized sale, modification or duplication of this
material may be an infringement of copyright.

CRISP® is a registered trademark of Square D Company.

I/ONYX® is a registered trademark of Square D Company.

The following are trademarks of Digital Equipment Corporation: VMS, DEC,
RSX-IIM Plus, VAX, MicroVAX, and PDP-II.

This information furnished by Square D Company is believed to be
accurate and reliable. However, Square D Company neither assumes
responsibility for its use nor for any infringements of patents or other
rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights
of Square D Company. This information is subject to change without
notice.

Document History

Revision

a

b

c

d

Date

8/9/90

8/16/90

9/25/90

12/6/90

Pages affected/Description of change

Software Version CRISP/32 Rev. 2.7 and later

Datagate
User's Guide
Document number: 500 046 - 001, Rev.

Table of Contents

500 046-001 Datagate User's Guide iii

Introduction

Introduction..1

Operation

General..3
Product Design Philosophy...4
CRISP VAX Implementation..4

Installing Datagate

General..5
Software Installation..6

DTG Installation..6
WORF Installation...7

Configuring Datagate...8
Configuring on a CRISP VAX..8
Configuring on a non-CRISP VAX...9

Starting Datagate..10
Stopping Datagate...10

Configuring Datagate

General..11
Using Datagate..13

CRISP Communications Package...13
User Configuration File (UCF)..14

SQL Statements...14
Writing To A Relational Database..15
Reading From A Relational Database..15
A Datagate Logical Transaction...16

UCF Design...16
The Datagate Opcodes..18
UCF Summary...20

Datagate Triggers..21
CRISP Variable Syntax..23

Table of Contents

iv Datagate User's Guide 500 046-001

Configuring Datagate (cont)

Datagate And SQL Statements...24
How To Do A SQL INSERT..25
How To Do A SQL UPDATE..26
How To Do A SQL DELETE...27
How To Do A SQL SELECT...28
Retrieving A Single Row...28
Retrieving Multiple Rows...30
Adhoc SQL...33
Retrieving Data From Multiple CRISP Databases...34

NULL Data...35
Supported Data Types...36
Datagate DATE Functions..37
Using CRISP Arrays..38

ROW_COUNT> And The SQL INSERT Statement...38
ROW_COUNT>, ROW_START> And The SQL SELECT Statement...........................39
Combining Arrays And Single Values..41

Using Datagate To Submit Batch Jobs..41
Improving CPU Usage..42
A Sample UCF for Rdb/VMS..43

Opcode Definitions

General..49
ADB_IDENT>..49
ADB_NODE>...49
ADB_TYPE>..49
ADD_TO_VAR>...50
BIT_NULL_DATA_VALUE>..50
BATCH_FILE>...50
BATCH_QUE>...50
BATCH_PARAMETER_P1>..51
BATCH_PARAMETER_P2>..51
BATCH_PARAMETER_P3>..51
BATCH_PARAMETER_P4>..51
BATCH_PARAMETER_P5>..52
BATCH_PARAMETER_P6>..52
BATCH_PARAMETER_P7>..52
BATCH_PARAMETER_P8>..52
CLEAR_STATUS_IF>...53
COMMIT_AND_CLR_IF>...53
COMMIT_IF>...53
CUSTOMER_CONFIG_CODE>..53
CUSTOMER_CONFIG_ID>..53
CUSTOMER_LOCATION>..54
CUSTOMER_NAME>..54

Table of Contents

500 046-001 Datagate User's Guide v

Opcode Definitions (cont)

CUSTOMER_SW_LICENSE>...54
CUSTOMER_USE_LIMIT>..54
DISABLE_RDBMS_COMMAND>...55
DISPLAY_END_OF_DATA_AT>..55
DISPLAY_MORE_DATA_AT>...56
DISPLAY_NEXT_ROW_INDEX_AT>...56
DISPLAY_RDBMS_STATUS_AT>...57
DISPLAY_SQLCODE_AT>..57
DISPLAY_SQL_DONE_AT>..58
DISPLAY_TOTAL_ROWS_AT>...58
ENABLE_RDBMS_COMMAND>...59
END>..59
EXECUTE_AND_CLR_IF>..59
EXECUTE_COMMIT_AND_CLR_IF>...60
EXECUTE_COMMIT_IF>..60
EXECUTE_IF>..60
EXIT_IF>..60
FLOAT_NULL_DATA_VALUE>...61
INIT>...61
LOGICAL_TRANSACTION>...61
NULLS_CHECKING>...61
NUMERIC_NULL_DATA_VALUE>...62
PRIMARY_STATUS_AT>...62
PROCESS>...63
RDBMS_IDENT>...63
RDBMS_TYPE>..63
ROLLBACK_AND_CLR_IF>...63
ROLLBACK_IF>...64
ROW_COUNT>...64
ROW_START>..64
SECONDARY_STATUS_AT>..65
SET_MIN_TRANSACTION_TIME_TO>...65
SET_VAR_TO>..65
SQL_STATEMENT>..66
STRING_NULL_DATA_VALUE>...66
SUBMIT_BATCH_AND_CLR_IF>...66
TIMEOUT>..67
TIMEOUT_ACTION>..68
ZERO_DATE>..68

Table of Contents

vi Datagate User's Guide 500 046-001

Token Definitions

General..69
Token Definitions - Alphabetical List...70
Token Definitions - Numerical List..71

State and Error Reporting

General..73
Primary Status Code Definitions...73
Secondary Status Code Definitions..75
RDBMS Status Code Definitions..76

Glossary

General..77

Introduction

500 046-001 Datagate User's Guide 1

Introduction The DATAGATE User's Guide provides the information necessary for
you to operate the DATAGATE software.

This manual contains the following sections.

Section Description

Operation This section of the manual contains
general information concerning the
basic operation of the DATAGATE
software (e.g., Product Design
Philosophy, VAX implementation, etc.).

(page 3)

Installing DATAGATE This section of the manual contains
information concerning the software
installation, configuration,
starting/stopping DATAGATE, etc.

(page 5)

Configuring DATAGATE This section of the manual contains
detailed information concerning the
configuration of the DATAGATE
software.

(page 11)

Opcode Definitions This section of the manual contains
detailed information concerning the
valid DATAGATE opcodes.

(page 49)

Token Definitions This section of the manual contains
detailed information concerning
keywords that may be used in place of
literal numeric values.

(page 69)

Status and Error Reporting This section of the manual contains
detailed information concerning the
codes that will be returned to the
application database.

(page 73)

Glossary This section of the manual contains
information concerning terms,
abbreviations, etc. used in this manual.

(page 77)

Introduction

2 Datagate User's Guide 500 046-001

Notes:

Operation

500 046-001 Datagate User's Guide 3

General The DATAGATE User's Guide provides the information concerning the
operation of the DATAGATE software.

This section contains the following subsections.

Section Description

Product Design PhilosophyThis section of the manual contains
general information concerning the
basic operation of the DATAGATE
software (e.g., Product Design
Philosophy, VAX implementation, etc.).

(page 4)

CRISP VAX Implementation This section of the manual contains
information concerning the
implementation of DATAGATE in the
CRISP/VAX environment.

(page 4)

Operation

4 Datagate User's Guide 500 046-001

Product Design Philosophy DATAGATE is a software product that is designed to handle
the transfer of data between any Relational Database Management
System supporting a Dynamic SQL interface and any host computer
database. RDBMS users are provided with both a programmatic means
to transfer data (used in conjunction with the embedded SQL capabilities
of the RDBMS product) and a means to setup configured data transfers.
The intent of a configured transfer is to allow users to specify SQL
statements which contain the names of application database variables,
whose values are to take the place of values in the SQL statement.
DATAGATE is designed to allow totally flexible bi-directional data
transfers.

SQUARE D/CRISP Automation is continually improving this product. If
you do not see a relational database construct that you need, please
contact us. One of our DATAGATE experts would be happy to address
your needs specifically.

CRISP VAX The specific DATAGATE implementation described in this manual is
Implementation used to transfer data between any number of Relational Database

Management Systems (RDBMS)and CRISP VAX databases. For
configured transfers, the user simply places a description of the desired
configuration in a disk file using DATAGATE configuration commands
in combination with ANSI Standard Query Language (SQL) statements
with a special syntax to denote CRISP Application Database (ADB)
variables. DATAGATE will then automatically perform the data
transfers between the tables specified and the CRISP databases.

The parts of the user configuration file are described in the Configuring
DATAGATE section. They include a description of the commands,
command defaults, and the relationship between relational database
tables and the CRISP databases.

For programmatic transfers, users will write their own Fortran or "C"
program containing both embedded SQL statements (for Rdb access) and
calls to a DATAGATE Run-Time Library (RTL) Communications
package which allows easy transfer of data into and out of CRISP
databases on any node.

Installing DATAGATE

500 046-001 Datagate User's Guide 5

General The DATAGATE User's Guide provides the information concerning the
installation of the DATAGATE software.

This section contains the following subsections.

Section Description

Software Installation This section of the manual contains
general information concerning the
installation of the DATAGATE
software.

(page 6)

Configuring DATAGATE This section of the manual defines the
configuration choices available
depending on whether or not
DATAGATE is installed on a system
with CRISP/32.

(page 8)

Installing Datagate

6 Datagate User's Guide 500 046-001

Software Installation This software is installed on your VAX/VMS system using Digital
Equipment Corporations standard VMSINSTAL.COM. Refer to the
installation guide provided with DATAGATE for more detailed
installation information. Please read this entire section before
proceeding with the installation.

For performance reasons, it is preferrable if the RDBMS of the user's
choice is installed on a non-CRISP VAX. Then, DATAGATE is installed
on the same VAX as the RDBMS. However, DATAGATE may be
installed on a CRISP VAX as long as the RDBMS is also installed on that
VAX.

In order for DATAGATE to function, WORF and DATAGATE must be
installed. The order in which the two products are installed is not
important; however, both products must be on the DATAGATE VAX
before attempting to start DATAGATE.

DGT Installation

Most of the DATAGATE files are installed in the directory
[TAG.DGT] on the specified disk; however, the DATAGATE
run-time libraries are installed in SYS$SHARE and a startup
procedure is placed in SYS$STARTUP on the system disk.

The following files are installed.

user$disk:[TAG.DGT] DGT.EXE
DGT_BUILD_INGRES_C_EXAMPLE.COM
DGT_BUILD_RDBVMS_C_EXAMPLE.COM
DGT_C_EXAMPLE.TEMPLATE
DGT_RDBVMS.UCF
DGT_SAMPLE.UCF
DGT_USERMAN.MEM
DGTTST.C32
USER_CONFIG_DGT.COM*
UCP$TRD.EXE
UCP$TIK.EXE
UCP$UCP.EXE

SYS$SHARE CRISPDGTRDBVMSRTL.EXE
CRISPDGTINGRESRTL.EXE

SYS$STARTUP DGT_STARTUP.COM

CRISP$ USER_CONFIG_DGT.COM*

In addition to the previous files, VMS help shall be available by
typing the following.

$ HELP DGT

Installing Datagate

500 046-001 Datagate User's Guide 7

(Continued on next page.)

Installing Datagate

8 Datagate User's Guide 500 046-001

☞ Note :

The sample user configuration files (UCFs) provide
with this product are intended as a reference only.
Do not give your production UCF the same name as
any of the example UCFs or they will be
overwritten by subsequent DATAGATE upgrades.
Also, the location of USER_CONFIG_DGT.COM is
dependent on whether DATAGATE is installed on
a CRISP or a non-CRISP VAX.

Once DATAGATE has been installed using VMSINSTAL, execute
the following.

$ @SYS$STARTUP:DGT_STARTUP ddc0: rdbms_1 [rdbms_2]

Where ddc0: should be replaced by the device that DATAGATE
was installed on and where rdbms_1 and, optionally, rdbms_2
should be replaced by one of the tokens RDBMVS or INGRES
depending on the relational database that you will use. You will
only need to replace rdbms_2 is you have both Rdb/VMS and
Ingres on your system.

This procedure creates the TAG_DGT$DEVICE logical and install
the DATAGATE run-time libraries. If this installation is
performed on a cluster, you must execute the previous line on all
other nodes in the cluster.

In addition, you will need to add the previous line to the system
startup file (SYS$STARTUP:SYSTARTUP_V5.COM).

WORF Installation

The WORF files are all installed on the system disk. They are
installed as follows.

SYS$LIBRARY: CRISPRTL.EXE
CRISPWORFRTL.EXE
CRISPUSERLIB.TLB

SYS$STARTUP: WORF_STARTUP.COM

SYS$EXAMPLES: WORF_EXAMPLE_C.C
WORF_EXAMPLE_FOR.FOR

SYS$HELP: WORF*.RELEASE_NOTES

(Continued on next page.)

Installing Datagate

500 046-001 Datagate User's Guide 9

WORF Installation (cont)

When the WORF installation is complete, you must execute the
following line and add it to the system startup procedure
(SYS$MANAGER:SYSTARTUP_V5.COM).

$ @SYS$STARTUP:WORF_STARTUP ddc0: [ddc0:]

Where ddc0: should be replaced by the device name(s) of the
network devices (e.g., XQA0:) that WORF is to use for
communicationns. The startup procedure defines system logical
names for CRISP$NET00 and CRISP$NET01 to refer to the
device(s)

If this installation is performed on a cluster, execute the previous
line on all other nodes in the cluster.

Configuring DATAGATE Once DATAGATE is installed, it must be configured. The
configuration choices available are dependant on whether DATAGATE
is installed on a CRISP or a non-CRISP VAX.

Configuring on a CRISP VAX

If DATAGATE is installed on a CRISP VAX, execute the
following command procedure.

$ @[CRISP]USER_CONFIG_DGT

This command procedure initially prompts you for the name of
the disk where the product has been installed, if it was unable to
determine this information automatically. This would normally
be the disk that holds you RDBMS or possibly your system disk.
You are also prompted to supply the name of your user
configuration file (UCF), which is the file that describes your
specific requirements. You must enter the full file specification,
including node, device, and directory.

You are then prompted whether you want DATAGATE to run
DETACHED or on a BATCH queue. This is dependant on you
specific system requirements.

If you specify that DATAGATE should run in BATCH mode,
you are then prompted for the name of the batch queue and you
are prompted to verify that the job limit qualifier for the queue is
large enough to run DATAGATE in addition to other system
batch jobs.

(Continued on next page.)

Installing Datagate

10 Datagate User's Guide 500 046-001

Configuring on a CRISP VAX (cont)

Regardless of whether you choose to run DATAGATE as
DETACHED process or on a batch queue, you are prompted for
the priority for each DATAGATE process. The recommended
value is 4.

The results of the configuration process are written to
[CRISP]USER_START_DGT.COM. DATAGATE will start
automatically when CRISP is started.

Configuring on a non-CRISP VAX

If DATAGATE is installed on a non-CRISP VAX, execute the
following command procedure.

$ @[TAG.DGT]USER_CONFIG_DGT

This command procedure initially prompts you for the name of
the disk where the product has been installed, if it was unable to
determine this information automatically. You are also prompted
to supply the name of your user configuration file (UCF), which
is the file that describes your specific requirements. You must
enter the full file specification, including node, device, and
directory.

You are then prompted for the name of the batch queue that
DATAGATE is to run on. Enter the name of a batch queue on
your system. You are prompted to verify that the job limit
qualifier for the queue is large enough to run DATAGATE in
addition to your other system requirements.

Finally, you are prompted for the priority at which DATAGATE
should run. The recommended value is 4.

The results of the configuration process are written to
[TAG.DDGT]USER_START_DGT.COM.

Installing Datagate

500 046-001 Datagate User's Guide 11

Starting DATAGATE To start DATAGATE on a CRISP system, execute the following
command procedure.

$ @[CRISP]USER_START_DGT

DATAGATE will start automatically when CRISP is started. Use the
following command to start CRISP and DATAGATE.

$ CRSTART

To start DATAGATE on a non-CRISP system, execute the following
command procedure.

$ @[TAG.DGT]USER_START_DGT

This command line may also be inserted in your SYSTARTUP_V5.COM
file so that DATAGATE will start automatically on system boot.

If you have chosen to run DATAGATE on a batch queue, a log file is
created in [TAG.DGT]SUBMIT_DGT_nn.LOG, where DGT_nn is the name of
the associated DATAGATE process.

Stopping DATAGATE To stop all DATAGATE processes, execute the following
command.

$ DGTK/PRODUCT=DGT

The previous line should be added to the system shutdown procedure
SYS$MANAGER:SYSHUTDWN.COM prior to any lines that shut down
relational database monitors.

Configuring Datagate

500 046-001 Datagate User's Guide 12

General The DATAGATE User's Guide provides the information concerning the
configuration of the DATAGATE software.

This section contains the following subsections.

Section Description

Using DATAGATE This section of the manual contains
information concerning the uses of
DATAGATE.

(page 13)

SQL Statements This section of the manual contains
information concerning DATAGATE
uses of SQL, including writing to and
reading from a relational database.

(page 14)

UCF Design This section of the manual contains
information concerning the contents of
the User Configuration File (UCF).

(page 16)

DATAGATE Triggers This section of the manual defines the
use of triggers with DATAGATE.

(page 21)

CRISP Variable Syntax This section of the manual defines the
use of CRISP variables with
DATAGATE.

(page 23)

DATAGATE and SQL Statements This section of the manual
defines how DATAGATE locates and
uses SQL statements.

(page 24)

NULL Data This section of the manual defines how
DATAGATE handles null data in
relational databases.

(page 35)

Supported Data Types This section of the manual defines the
CRISP and RDBMS data types that will
be supported by DATAGATE.

(page 36)

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 13

Section Description

DATAGATE DATE Functions This section of the manual defines
how DATAGATE timestamps records
that are written to the relational
database.

(page 37)

Using CRISP Arrays This section of the manual defines how
DATAGATE uses CRISP arrays.

(page 38)

Using DATAGATE to Submit This section of the manual defines
how

Batch Jobs DATAGATE can be used to submit
command procedures to a batch queue.

(page 41)

Improving CPU Usage This section of the manual defines how
to improve CPU usage.

(page 42)

A Sample UCF for Rdb/VMS This section of the manual contains a
sample UCF for Rdb/VMS.

(page 43)

Configuring Datagate

14 Datagate User's Guide 500 046-001

Using DATAGATE DATAGATE provides users with a flexible means to transfer data both
into and out of a Relational Database Management System (RDBMS).
Data transfer may be accomplished between the relational database and
the CRISP Application Database (ADB) in two manners.

First, users may write programs in languages such as "C" or Fortran,
embedding SQL statements in the code, and then reading or writing
CRISP variables by making calls to a communications library provided
with DATAGATE. These programs are then under user control as
opposed to CRISP control; they can be executed (via mechanisms
provided with some RDBMS screen packages) when data changes or
when some other RDBMS event occurs.

Second, users may preconfigure transfers by creating a file that contains
a combination of DATAGATE commands and the ANSI standard
Structured Query Language (SQL). Instead of placing values into the
SQL statements, users will place the names of CRISP variables whose
values will be substituted in the SQL statement when the statement is
executed. Actual execution of a SQL statement will be determined by
"triggers" from CRISP application database variables. The application
database may be under the control of a CRISP logic if the user so
desires.

CRISP Communications Package

DATAGATE provides a run-time library containing routines that
make it simple for users to read and write CRISP variable data.
Using routines in the library, users will be able to create lists
(Data Source Lists (DSL)) of CRISP variables. Variables in a
single list may reside on any CRISP node in the system. Once a
DSL is created, a separate call is made to either read the list or
write the list.

Examples of programs which contain embedded SQL and make
calls to the WORF communications RTL are located in the
[TAG.DGT] directory. The files that will build an Rdb/VMS demo
using a VAX C compiler are as follows.

• DGT_BUILD_RDBVMS_C_EXAMPLE.COM
• DGT_C_EXAMPLE.TEMPLATE
• DGTTST.C32

Building the demo requires the following two steps.

1 If you plan to actually execute the demo, copy DGTTST.C32
to a CRISP VAX. Then, use LGBUILD to build it and
LGCONFIG to install it. You will need to stop and restart
CRISP.

Configuring Datagate

500 046-001 Datagate User's Guide 15

(Continued on next page.)

Configuring Datagate

16 Datagate User's Guide 500 046-001

CRISP Communications Package (cont)

2 Execute the DGT_BUILD_RDBVMS_C_EXAMPLE.COM
procedure. This procedure builds a test Rdb/VMS database
and prompts you for the name of the CRISP node where you
installed the DBTTST database. When this procedure finishes
executing, a DGT_RDBVMS_C_EXAMPLE.EXE will be created.

Once the DGT_FRBVMS_C_EXAMPLE.EXE file is created, it may
be run. The file DGT_RDBVMS_C_EXAMPLE.SC is the SQL
module containing EXEC SQL statements. The file
DGT_RDBVMS_C_EXAMPLE.C contains the C code generated.

Similar procedures are available in [TAG.DGT] to build an Ingres
demo.

User Configuration File (UCF)

When the exact relational tables involved in the data transfer are
known, users may place the SQL statements describing the
transfer in a UCF (User Configuration File). To allow for adhoc
data transfer, users many also specify a CRISP STRING variable
which will contain the SQL statement to be executed.

The user generated User Configuration File (UCF) will contain
control parameters referred to as opcodes. These opcodes are
converted into an optimized internal format at start time. The
opcodes are used by the various processes that make up
DATAGATE to control the number of logical transactions and to
determine when SQL statements are to be executed. The
DATAGATE UCF is an ASCII text file that is easily created
with any text file editor. A sample file may be found in the
[TAG.DGT] directory in the file DGT_SAMPLE.UCF.

SQL Statements DATAGATE uses ANSI Standard SQL as its base language for
communicating to an RDBMS. Depending on the RDBMS, some non-
ANSI SQL features may also be available. All Data Manipulation
Language (DML) statements are allowed (DELETE, INSERT, SELECT, and
UPDATE) as well as all Data Definition Language (DDL) statements
(ALTER, COMMENT, CREATE, and DROP). In addition, the Data
Control Language (DCL) statements (GRANT and REVOKE). The
COMMIT and ROLLBACK statements are also under user control.

Configuring Datagate

500 046-001 Datagate User's Guide 17

SQL Statements (cont)

Writing To A Relational Database

In the relational database environment, there are 3 types of
statements which add or change data in a database: INSERT,
UPDATE and DELETE. The INSERT statement is used when the
user wants to create a new row in a table. Effectively, this is an
ADD function. UPDATE is used to MODIFY one or more rows in
a single relational database table, while DELETE is used to delete
one or more rows in a single database table.

However, any data in the relational database is not actually
changed until a COMMIT is issued. The COMMIT statement
means that the changes should be made permanent. A user may
also issue a ROLLBACK statement which means that the changes
should not be made (i.e., the database should be put back the
way it was before).

Reading From A Relational Database

In the relational database environment, the SELECT statement is
used to "locate" and "read" data from the relational database. A
single row SELECT is fairly straight forward. As long as the user is
familiar enough with the relational database to know that a single
row is to be retrieved, the statement can be easily executed and the
data moved into the corresponding CRISP database variables.

When a SQL SELECT statement retrieves more data than the
CRISP application database has been configured for, the CRISP
application can be designed to handle the data in several ways.
Users may, for example, wish to use the CRISP database to
"scroll" through rows in a relational database table, or
combination of tables. By using a combination of the
DATAGATE ROW_COUNT> function and the DATAGATE
ROW_START> opcode, the user will be able to issue SQL
statements that get "the first 5 rows", then the "next 5 rows",
etc, until all data in the query has been transferred through the
CRISP database. The order that the data is returned to the CRISP
database is determined by the ORDER BY clause in the SQL
statement itself. Any SQL SELECT statement is allowed,
including multi-table JOINS.

Another consideration when reading data from a relational
database is when to issue the ROLLBACK or COMMIT statements.
Due to the transaction capabilities of all Relational Database
Management Systems, once a read query has been started, the
data returned by the RDBMS is guaranteed not to change until a
ROLLBACK or COMMIT is issued; at that time, any data that was
written by "other sources" will be made available if the query is
re-executed. When reading data from the relational database, the
affect of a COMMIT or ROLLBACK is to finish the query.

Configuring Datagate

18 Datagate User's Guide 500 046-001

Configuring Datagate

500 046-001 Datagate User's Guide 19

SQL Statements (cont)

A DATAGATE Logical Transaction

In RDBMS terms, a transaction consists of all statements that take
place between the first of many DML statements and the
execution of either a COMMIT or a ROLLBACK. When a user
starts a transaction, his view of the database is logically frozen;
any data he adds, modifies, or deletes is only changed in his
view; any data he reads is only read from his view.
Transactions may be read (where the SELECT is the only
statement issued), or write (where any statement except the
SELECT is issued), or read/write. The affect of a COMMIT on a
write transaction is that any changes made during the transaction
are made permanent; they will be seen by other users. The affect
of a ROLLBACK on a write transaction is that the database reverts
back to the way it was prior to the start of the transactions; all
changes are discarded. The affect of a COMMIT or ROLLBACK
on a read transaction is the same: any changes made by other
users during the course of the transactions are now available,
and will be seen if the SELECT is re-executed.

This discussion shows that the question of when to issue a
COMMIT or ROLLBACK is important, especially when a UCF has
SQL INSERT statements followed by SQL SELECT statements.
DATAGATE may be in the process of returning a multiple row
select by groups of rows when a COMMIT from an INSERT
statement needs to be issued. If DATAGATE were to go ahead
and issue the COMMIT, it is possible that the data in the SELECT
statement would be changed, since new data could potentially be
present.

To handle this situation, DATAGATE provides a concept known
as a LOGICAL TRANSACTION. By grouping SQL statements
together, the user will have the capability to determine which
statements will be affected when a COMMIT or ROLLBACK is
issued.

All UCFs must have at least one logical transaction (denoted by
the LOGICAL_TRANSACTION> opcode). In many user scenarios,
one logical transaction is sufficient. For those RDBMSs that
support multiple databases, each database must have its own
logical transaction. DATAGATE will create one process on the
RDBMS CPU for each logical transaction found in the UCF.

UCF Design The User Configuration File (UCF) is an ASCII text file composed of a
sequential listing of commands (opcodes) for DATAGATE. It is the
user's responsibility to ensure the proper organization of these opcodes
for his specific purpose.

Configuring Datagate

20 Datagate User's Guide 500 046-001

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 21

UCF Design (cont) An opcode may begin at any location on the line as long as it is the first
text item and is immediately followed by one or two right angle
brackets. Most opcodes, with a few exceptions, allow up to two
parameters. The first parameter will generally be an Application
Database (ADB) variable name and the second parameter will usually be
a default value for the operation. Constant (token) definitions are
supplied for default entries, where appropriate, in an attempt to reduce
confusion.

The general syntax of all DATAGATE opcode statement is as follows.

OPCODE> DBNODE::DB_NAME:VARIABLE ; DEFAULT_VALUE
OPCODE>> DBNODE:DB_NAME:VARIABLE ; DEFAULT_VALUE ! COMMENT

Where OPCODE is one of the opcodes described in this manual;
DBNODE is the VMS node where the application database resides,
always followed by a double colon ("::"); DB_NAME is the optional
database identifier, always followed by a colon (":"); NAME is the name
of the usually optional database variable used by the command, and
DEFAULT_VALUE is the initial value or the only value used if the
database variable is missing. DEFAULT_VALUE may be a literal numeric
(integer or float), a pre-defined constant (token), or a quoted text-string,
depending on the specific opcode used. See the example at the end of
this manual for specifics.

The single ">" indicates a continuously scanned statement, while ">>"
indicates a statement that is executed only once at startup or restart.

The exclamation point denotes the start of a comment. Anything to the
right of the exclamation point is ignored. Imbedded comments are
illegal and you may therefore start comments only to the right of any
opcodes you wish to use. It is legal to have a line which contains only a
comment. Further, all spaces and tabs, other than those enclosed in
double quotes, as well as blank lines, will be ignored.

Many opcodes have their own system defined default value. Usually
the value need not be specified if the default value matches your system
requirements. Any default entry supplied to the right of the semicolon is
substituted for the system default value for the current opcode only.
This means that subsequent uses of the same opcode will still have the
original system default value.

Configuring Datagate

22 Datagate User's Guide 500 046-001

UCF Design

The DATAGATE Opcodes

The "control" opcodes are those that break the UCF into sections.
They are as follows.

• DEFINE>
• INIT>
• PROCESS>
• LOGICAL_TRANSACTION>
• END>

The first opcode in every UCF must be the DEFINE> opcode.
This opcode flags the start of the definition section. Any
opcodes prior to the DEFINE> opcode are ignored. Until either
the INIT> or the PROCESS> opcode is encountered, all statements
following the DEFINE> opcode are considered to be initial
definitions, and are processed only once at startup, or at restart.
Any opcodes not considered legal in the definition section will
be ignored. All opcodes in the definition section are "one shot"
opcodes. This means that they will be treated as though they
had two right angle brackets immediately following them. The
purpose of the definition section is to define customer licensing
information to the DATAGATE product. This means that each
of the following opcodes must appear in the definition section:

• CUSTOMER_CONFIG_CODE>
• CUSTOMER_CONFIG_ID>
• CUSTOMER_LOCATION>
• CUSTOMER_NAME>
• CUSTOMER_SW_LICENSE>
• CUSTOMER_USE_LIMIT>

The INIT> opcode, which may optionally be declared immediately
preceding the process section, indicates the beginning of the
initialization section. Opcodes found in this section are considered
to be initialization opcodes, and are processed only once at startup,
or at restart. This section permits the user to define some opcodes
that may otherwise be repeated throughout the UCF. The opcodes
defined in the initialization section will become, in effect, the new
defaults for that opcode. This new default maybe overridden in a
corresponding LOGICAL_TRANSACTION> section.

The following opcodes (except for EXIT_IF>) may appear in the
initialization section to define values on a UCF wide basis. In
addition, each opcode may appear in the process section
following a LOGICAL_TRANSACTION> opcode to define values
for that particular logical transaction.

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 23

UCF Design

The DATAGATE Opcodes (cont)

• ADB_IDENT>
• ADB_NODE>
• ADB_TYPE>
• BATCH_FILE>
• BATCH_PARAMETER_P1>
• BATCH_PARAMETER_P2>
• BATCH_PARAMETER_P3>

.

.

.
• BATCH_PARAMETER_P8>
• BATCH_QUE>
• BIT_NULL_DATA_VALUE>
• DISABLE_RDBMS_COMMAND>
• ENABLE_RDBMS_COMMAND>
• EXIT_IF>
• FLOAT_NULL_DATA_VALUE>
• NULLS_CHECKING>
• RDBMS_IDENT>
• RDBMS_TYPE>
• SET_MIN_TRANSACTION_TIME_TO>
• SET_VAR_TO>
• STRING_NULL_DATA_VALUE>
• TIMEOUT>
• TIMEOUT_ACTION>
• ZERO_DATE>

The PROCESS> opcode, which flags the end of the definition and
initialization sections and the beginning of the process section, is
also required. Any opcodes not considered legal in the process
section is ignored. All logical transactions should be defined in
this section. All of the following opcodes must appear in this
section.

• ADD_TO_VAR>
• CLEAR_STATUS_IF>
• COMMIT_AND_CLR_IF>
• COMMIT_IF>
• DISPLAY_END_OF_DATA_AT>
• DISPLAY_MORE_DATA_AT>
• DISPLAY_NEXT_ROW_INDEX_AT>
• DISPLAY_RDBMS_STATUS_AT>
• DISPLAY_SQLCODE_AT>
• DISPLAY_SQL_DONE_AT>
• DISPLAY_TOTAL_ROWS_AT>
• EXECUTE_AND_CLR_IF>
• EXECUTE_COMMIT_AND_CLR_IF>

(Continued on next page.)

Configuring Datagate

24 Datagate User's Guide 500 046-001

UCF Design
The DATAGATE Opcodes (cont)

• EXECUTE_COMMIT_IF>
• EXECUTE_IF>
• LOGICAL_TRANSACTION>
• PRIMARY_STATUS_AT>
• ROLLBACK_AND_CLR_IF>
• ROLLBACK_IF>
• ROW_COUNT>
• ROW_START>
• SECONDARY_STATUS_AT>
• SQL_STATEMENT>
• SUBMIT_BATCH_AND_CLR_IF>

The END> opcode, which is required, signals the end of the
UCF. All opcodes following the END> opcode are ignored.

Summary:

1) All opcodes end in ">" or ">>".

2) Not all opcodes support both parts of NAME; DEFAULT_VALUE;
the ";" is required when either, or both are given.

3) All licensing information must follow DEFINE> and precede
PROCESS>.

4) All initialization opcodes follow INIT> and precede PROCESS>.

5) Any text following an "!" on a line will be ignored.

6) A LOGICAL_TRANSACTION> opcode must be the first
following the PROCESS> opcode.

UCF Summary

To reiterate, the general format of all DATAGATE configuration
statements in a UCF file is as follows.

COMMAND> NAME;DEFAULT_VALUE ! COMMENT

Where COMMAND is one of the configuration commands
(Opcodes) described in this manual; NAME is the name of an
usually optional database variable used by the command and
DEFAULT_VALUE is the initial value or the only value used if the
database variable is missing. If the database NAME is provided,
the DEFAULT_VALUE will be replaced at run time by the value of
the variable.

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 25

UCF Design
UCF Summary (cont)

A single ">" indicates a continuously scanned statement, while ">>"
indicates a statement that is executed only once at startup or restart.

☞ Note :

You must include the six customer identification
commands exactly as they appear in your
DATAGATE License Agreement. The commands
should be placed immediately after the DEFINE>
statement.

An example of a user configuration file (UCF) is located at the
back of this manual.

DATAGATE Triggers In DATAGATE, a SQL statement is executed when a trigger is
TRUE. A trigger is any CRISP variable of type INTERMEDIATE,
NUMERIC, LONG, or FLOAT. The trigger is considered to be TRUE if its
value is non-zero; the trigger is FALSE if its value is zero. A trigger may
not be of type COUNTER, TIMER, or STRING.

A CRISP variable becomes the trigger for a SQL statement when it is
used with one of the following opcodes:

• EXECUTE_IF>
• EXECUTE_AND_CLR_IF>
• EXECUTE_COMMIT_IF>
• EXECUTE_COMMIT_AND_CLR_IF>

During each scan of the UCF, all triggers are read. When they become
TRUE, actions are performed according to the EXECUTE type opcode as
follows:

• EXECUTE_IF>

1) Read all values necessary to complete the SQL statement.

2) Execute the SQL statement.

3) For SELECT statements, write the values found back to CRISP.

4) Write any associated values found in the DISPLAY type opcodes.

• EXECUTE_AND_CLR_IF>

1) Read all values necessary to complete the SQL statement.

2) Execute the SQL statement.

Configuring Datagate

26 Datagate User's Guide 500 046-001

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 27

DATAGATE Triggers (cont) 3) For SELECT statements, write the values found back to
CRISP.

4) Write any associated values found in the DISPLAY type opcodes.

5) Write a value of 0 to the trigger variable.

• EXECUTE_COMMIT_IF>

1) Read all values necessary to complete the SQL statement.

2) Execute the SQL statement.

3) For SELECT statements, write the values found back to CRISP.

4) Write any associated values found in the DISPLAY type opcodes.

5) Issue a COMMIT.

• EXECUTE_COMMIT_AND_CLR_IF>

1) Read all values necessary to complete the SQL statement.

2) Execute the SQL statement.

3) For SELECT statements, write the values found back to CRISP.

4) Write any associated values found in the DISPLAY type opcodes.

5) Issue a COMMIT.

6) Write a value of 0 to the trigger variable.

If an error is found while executing the SQL statement, only steps 1) and
2) will be performed. The only values to be written back to the CRISP
database will be the SQLCODE value and the RDBMS_STATUS value if the
user specified one of both of these values to be returned. In the event of
an error, a COMMIT will not be issued and the trigger will not be cleared.
Instead, a message is displayed either on the system console or in the log
file a batch job.

Configuring Datagate

28 Datagate User's Guide 500 046-001

CRISP Variable Syntax CRISP variables will appear throughout the UCF. The complete
syntax for a CRISP variable is as follows.

[node-1[,node-2]::][db:]varname[(subscript)][*]

Where:

node-1 is the node name of a machine that has the data.

node-2 is an alternate node name of a machine that has the data.

db is the name of the CRISP database.

varname is the name of the variable in the CRISP database.

subscript is an integer, or symbol name in the database, that is
used as a subscript value.

* is a symbol used to indicate the value of the variable is to
be used only once when multiple rows are to be inserted.

An example of a full variable name is as follows.

AZVAX1::TAGTST:WL11000(RL00000)

Users may use the full variable specification each time, or else use the
ADB_NODE> and ADB_IDENT> opcodes to set up defaults for all CRISP
variables found until the defaults are explicitly over-ridden by using a
full variable specification, or by using the ADB_NODE> and/or
ADB_IDENT> opcodes again to set up new defaults. Given the following
excerpt from a UCF.

ADB_NODE> ; "AZVAX1"
ADB_IDENT> ; "TAGTST"
.*
.*
EXECUTE_IF> GET_IF113 ;
.*
.*
EXECUTE_IF> AZVAX2::OTHRDB:GET_IF111 ;
.*
.*
EXECUTE_IF> GET_IF112 ;
ADB_IDENT> ; "CSPTST"
.*
.*
EXECUTE_IF> GET_CRISP;

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 29

CRISP Variable Syntax The variable GET_IF113 is assumed to be in the TAGTST database
on node

(cont) AZVAX1. GET_IF111 is found on node AZVAX2 in database OTHRDB but
the defaults are still AZVAX1 and TAGTST. This means that GET_IF112 is
to be found on AZVAX1 in TAGTST. Now, the ADB_IDENT> opcode is
used to change the default database, but not the node; GET_CRISP should
be found on node AZVAX1 in database CSPTST.

☞ Note :

The ADB_NODE> and ADB_IDENT> opcodes MUST be
used before the first CRISP variable that is not specified
using the complete syntax. There is NO system default
for node or database.

DATAGATE And SQL DATAGATE will find its SQL statements via the SQL_STATEMENT>

Statements opcode. DATAGATE does not process the SQL_STATEMENT opcodes
until the associated trigger is true. At that time, it builds the SQL
statement, parses it, and executes it. SQL statements tend to become
long rather quickly, so DATAGATE will concatenate all strings found in
consecutive SQL_STATEMENT> opcodes until a terminating semi-colon
is found. The "trigger" for the SQL statement is found with one of the
following opcodes: EXECUTE_IF>, EXECUTE_AND_CLR_IF>,
EXECUTE_COMMIT_IF>, or EXECUTE_COMMIT_AND_CLR_IF>.

By default INSERT and SELECT are the only RDBMS commands available
unless the user specifically enables them.

This is to prevent the user from unintentionally making disastrous changes
to the database. To enable a specific command, use the
ENABLE_RDBMS_COMMAND> opcode. The tokens of ALTER, COMMENT,
CREATE, DELETE, DROP, GRANT, INSERT, REVOKE, SELECT, and
UPDATE have been provided to make it easy to specify the command to be
enabled. These are the only commands that are currently supported by
DATAGATE in a SQL statement. It is also possible to disable a command
by using the DISABLE_RDBMS_COMMAND> opcode.

Note that the SQL commands COMMIT and ROLLBACK are missing from
the list of allowable commands. This is because DATAGATE provides
the means to do this through special opcodes other than the
SQL_STATEMENT> opcode. When setting the trigger for a SQL
statement, a COMMIT is implied if either the EXECUTE_COMMIT_IF> or
EXECUTE_COMMIT_AND_CLR_IF> opcodes are used. A COMMIT will
be issued if the trigger associated with either the COMMIT_IF> or
COMMIT_AND_CLR_IF> opcodes is true. There are no opcodes that
execute a SQL statement and then issue a ROLLBACK; it is assumed that
most data is expected to be made permanent in the relational database. It
is expected that a ROLLBACK will only be issued in the event of an error.

(Continued on next page.)

Configuring Datagate

30 Datagate User's Guide 500 046-001

DATAGATE and SQL If a CRISP application logic is in control of the DATAGATE data
transfers,

Statements (cont) make sure that either the DISPLAY_SQLCODE_AT> opcode or the
DISPLAY_RDBMS_STATUS> opcode is used with each SQL statement.
DATAGATE will not clear the trigger variable unless the SQLCODE
status returned by the RDBMS is non-negative; the SQLCODE status will
be written back to the CRISP database even in the event of an error.
Refer to the following sections for examples.

DATAGATE will locate the names of CRISP variables in the SQL
statements by the pound sign (#) which must precede them. In the
following SQL statement, the CRISP variables are EMP_VAR and
LAST_VAR.

SQL_STATEMENT> ; "INSERT INTO EMPLOYEES"
SQL_STATEMENT> ; "(EMPLOYEE_ID, LAST_NAME)"
SQL_STATEMENT> ; "VALUES"
SQL_STATEMENT> ; "(#EMP_VAR, #LAST_VAR);"

If DATAGATE executed the previous SQL statement, the values of
EMP_VAR and LAST_VAR would be substituted before the statement is
executed.

☞ Note :

Each SQL statement may be made up from many SQL_STATEMENT>
opcodes but must have a single execute type opcode. The variables
associated with the execute opcodes for different SQL statements
may be the same so that several SQL statements will execute when a
single trigger is set. In this case, the statements will be executed in
the order they are found in the UCF. This is referred to as 'chaining'
SQL statements. It is suggested that the EXECUTE_IF> opcode be
used for all SQL statements except the last one; the opcode for the
final chained SQL statement should be EXECUTE_AND_CLR_IF> or
EXECUTE_COMMIT_AND_CLR_IF>.

How To Do A SQL INSERT

Users will specify the INSERT statement when they want to add one
or more rows to a relational database table. DATAGATE does no
checking to verify that the relation specified is in fact a table and not
a view. Inserting a row into a view may cause the row to be "lost".
(For more information on views see your RDBMS documentation).

The following is an example from a UCF file.

ADB_NODE> ; "AZVAX2"
ADB_IDENT> ; "EMPADB"
SQL_STATEMENT> ; "INSERT INTO EMPLOYEES"
SQL_STATEMENT> ; "(EMPLOYEE_ID, LAST_NAME,FIRST_NAME)"
SQL_STATEMENT> ; "VALUES"
SQL_STATEMENT> ; "(#EMPNO_VAR, #LAST_VAR,#FIRST_VAR);"
DISPLAY_SQLCODE_AT> STATUS_VAR ;
DISPLAY_SQL_DONE_AT> INSERT_DONE_VAR ;
EXECUTE_COMMIT_AND_CLR_IF> INSERT_VAR ;

Configuring Datagate

500 046-001 Datagate User's Guide 31

(Continued on next page.)

Configuring Datagate

32 Datagate User's Guide 500 046-001

DATAGATE and SQL Statements

How To Do A SQL INSERT (cont)

When the value of INSERT_VAR (in CRISP application database
EMPADB on VAX node AZVAX2) is TRUE, DATAGATE
performs the following:

1) Read the variables EMPNO_VAR, LAST_VAR, FIRST_VAR
from the CRISP database named EMPADB on node AZVAX2.

2) Substitute the values read into the SQL statement.

"INSERT INTO EMPLOYEES (EMPLOYEE__ID,.LAST_NAME, FIRST_NAME, …);"

3) If no errors are found, issue a COMMIT.

4) Write the RDBMS SQLCODE value to the variable STATUS_VAR.

5) If no errors were found, write a value of 0 to the variable
INSERT_VAR and a value of 1 to the variable
INSERT_DONE_VAR.

How To Do A SQL UPDATE

Users will specify the UPDATE statement when they want to
modify one or more rows in a relational database table.
DATAGATE does no checking to verify that the relation specified
is in fact a table and not a view. Updating a view is not
recommended. For more information on views refer to your
RDBMS documentation).

UPDATEs are performed in the same fashion as INSERTs with
one exeception: the UPDATE command must first be enabled.
Failure to enable the UPDATE will prevent the execution of the
SQL statement. In this case, an error message is then sent to the
system console or written to the log file.

For purposes of the following example, it is assumed that the
ADB_IDENT> opcode has already been used so that the CRISP
variables (indicated by pound signs (#)) found in the SQL
statements can be located in a CRISP ADB.

ENABLE_RDBMS_COMMAND> ;UPDATE
SQL_STATEMENT> ; "UPDATE EMPLOYEES"
SQL_STATEMENT> ; "SET LAST_NAME = #LAST_VAR,"
SQL_STATEMENT> ; "FIRST_NAME = #FIRST_VAR"
SQL_STATEMENT> ; "WHERE EMPLOYEE_ID = #EMPNO_VAR;"
DISPLAY_SQLCODE_AT> UPD_STATUS_VAR ;
DISPLAY_SQL_DONE_AT> UPDATE_DONE_VAR ;
EXECUTE_COMMIT_AND_CLR_IF> UPDATE_VAR ;

Configuring Datagate

500 046-001 Datagate User's Guide 33

(Continued on next page.)

Configuring Datagate

34 Datagate User's Guide 500 046-001

DATAGATE and SQL Statements

How To Do A SQL UPDATE (cont)

Because UPDATEs have been enabled, whenever the value of
UPDATE_VAR (in the associated CRISP ADB) is non-zero,
DATAGATE will perform the following.

1) Read the variables EMPNO_VAR, LAST_VAR, FIRST_VAR
from the associated CRISP database.

2) Substitute the values found into the SQL statement.

"UPDATE EMPLOYEES SET LAST=NAME = #LAST_VAR, … , #EMPNO_VAR;"

3) If no errors are found, issue a COMMIT.

4) Write the RDBMS SQLCODE value to the variable
UPD_STATUS_VAR.

5) If no errors were found, write a value of 0 to the variable
UPDATE_VAR and a value of 1 to the variable
UPDATE_DONE_VAR.

How To Do A SQL DELETE

Users should use caution when performing the SQL DELETE
function. It has been provided with the DATAGATE interface
for the sake of completeness. As with the UPDATE function, the
DELETE command must first be enabled before it can be used.

For purposes of the following example, it is assumed that the
ADB_IDENT> opcode has already been used so that the variables
associated with the pound signs (#) found in the SQL statements
can be located in a CRISP ADB.

ENABLE_RDBMS_COMMAND> ; DELETE
SQL_STATEMENT> ; "DELETE FROM EMPLOYEES"
SQL_STATEMENT> ; "WHERE EMPLOYEE_ID = #EMPNO_VAR;"
DISPLAY_SQLCODE_AT> DEL_STATUS_VAR ;
DISPLAY_SQL_DONE_AT> DELETE_DONE_VAR ;
EXECUTE_AND_CLR_IF> DELETE_VAR ;
DISABLE_RDBMS_COMMAND> ; DELETE

Because DELETEs have been enabled, when the value of
DELETE_VAR (in the associated CRISP ADB) is non-zero,
DATAGATE will perform the following.

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 35

DATAGATE and SQL Statements

How To Do A SQL DELETE (cont)

1) Read the variable EMPNO_VAR from the associated CRISP
database.

2) Substitute the value found into the SQL statement.

"DELETE FROM EMPLOYEES WHERE EMPLOYEE__ID = #EMPNO_VAR;"

3) Write the RDBMS SQLCODE value to the variable
DEL_STATUS_VAR.

4) If no errors were found, write a value of 0 to the variable
DELETE_VAR and a value of 1 to the variable
DELETE_DONE_VAR

How To Do A SQL SELECT

The DATAGATE form of the SQL SELECT statement is the only
one that looks slightly different from standard interactive SQL.
The form of the SELECT statement in DATAGATE resembles a
programmatic singleton SELECT with use of the INTO clause.
The variables in the INTO clause will be the CRISP variables
where DATAGATE is to write the data retrieved from the
SELECT statement. As with the other DATAGATE SQL syntax,
these CRISP variables are to be preceded by a pound sign (#).

There is no need to specifically enable the SELECT command as
it is enabled by default.

Retrieving A Single Row

The following is an example of the simplest form of the
SELECT. In this example, exactly one row is retrieved
from the relational database and the values written to
CRISP; it is assumed that the EMPLOYEE_ID field in the
database is unique and that all CRISP variables are of type
STRING; it is also assumed that the ADB_IDENT> opcode
has already been used so that the variables associated
with the pound signs (#) found in the SQL statements can
be located in a CRISP ADB.

(Continued on next page.)

Configuring Datagate

36 Datagate User's Guide 500 046-001

DATAGATE and SQL Statements
How To Do A SQL SELECT

Retrieving A Single Row (cont)

STRING_NULL_DATA_VALUE> ; "No data"
SQL_STATEMENT> ; "SELECT LAST_NAME, FIRST_NAME"
SQL_STATEMENT> ; "INTO #LAST_VAR, #FIRST_VAR"
SQL_STATEMENT> ; "FROM EMPLOYEES"
SQL_STATEMENT> ; "WHERE EMPLOYEE_ID = #EMPNO_VAR;"
DISPLAY_SQLCODE_AT> SEL_STATUS_VAR ;
DISPLAY_SQL_DONE_AT> SELECT_DONE_VAR ;
EXECUTE_AND_CLR_IF> SELECT_VAR ;

When the value of SELECT_VAR (in the associated CRISP
ADB) is non-zero, DATAGATE will perform the
following.

1) Read the variable EMPNO_VAR from the associated
CRISP database.

2) Substitute the value found into the SQL statement.

"SELECT LAST_NAME, FIRST_NAME, …, #EMPNO_VAR);"

3) If a matching row is found, take the value found in
the LAST_NAME column and write it to the CRISP
variable LAST_VAR and take the value found in the
FIRST_NAME column and write it to the CRISP
variable FIRST_VAR.

4) If no matching row is found, the values associated
with the STRING_NULL_DATA_VALUE> opcode will
be written to the associated CRISP variables. In this
case the value "No data" will be written to each of the
variables LAST_VAR and FIRST_VAR.

5) Write the RDBMS SQLCODE value to the variable
SEL_STATUS_VAR.

6) If no errors were found, write a value of 0 to the
variable SELECT_VAR and a value of 1 to the variable
SELECT_DONE_VAR

Configuring Datagate

500 046-001 Datagate User's Guide 37

DATAGATE and SQL Statements

How To Do A SQL SELECT (cont)

Retrieving Multiple Rows

The following example shows how to read all rows in a
table one at a time. It is the ROW_COUNT> opcode that
specifies that only one row is to be retrieved at a time.
The ROW_START> opcode specifies which row in the
table is to be found and written to the CRISP ADB.

SET_VAR_TO>> ROW_START_VAR ; 1
STRING_NULL_DATA_VALUE> ; "No Data"
ROW_START> ROW_START_VAR ;
ROW_COUNT> ; 1
SQL_STATEMENT> ; "SELECT LAST_NAME, FIRST_NAME"
SQL_STATEMENT> ; "INTO #LAST_VAR, #FIRST_VAR"
SQL_STATEMENT> ; "FROM EMPLOYEES"
SQL_STATEMENT> ; "ORDER BY LAST_NAME;"
DISPLAY_END_OF_DATA_AT> COMMIT_VAR ;
DISPLAY_TOTAL_ROWS_AT> TOTAL_VAR ;
DISPLAY_NEXT_ROW_INDEX_AT> ROW_START_VAR ;
EXECUTE_AND_CLR_IF> SELECT_VAR ;
COMMIT_AND_CLR_IF> COMMIT_VAR ;

When DATAGATE performs its initialization, it will
write a value of 1 to the variable ROW_START_VAR. It
will do this only once (as shown by the double angle
bracket (>>)). It is assumed for purposes of this
example, that DATAGATE encounters no errors; it is
also assumed that the EMPLOYEES table has only 2 rows.
The ORDER BY clause in the SQL statement itself
determines which of the 2 rows is "first" and which one
is "second".

The following shows how the rows are retrieved the first
time that SELECT_VAR is set:

1) Since the value of ROW_START_VAR is one, read the
first row in the EMPLOYEES table.

2) Write the following values to the CRISP database:

a) Take the value found in the LAST_NAME column
of the first row and write it to the CRISP variable
LAST_VAR.

b) Take the value found in the FIRST_NAME column
of the first row and write it to the CRISP variable
FIRST_VAR.

Configuring Datagate

38 Datagate User's Guide 500 046-001

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 39

DATAGATE and SQL Statements

How To Do A SQL SELECT

Retrieving Multiple Rows (cont)

c) Since the row returned was row 1, the next
available row is row 2; therefore write the value
of 2 to ROW_START_VAR. (This is due to the
DISPLAY_NEXT_ROW_INDEX_AT> opcode.)

d) Since the last row was not found, write a value
of 0 to COMMIT_VAR. (This is due to the
DISPLAY_END_OF_DATA_AT> opcode.)

e) Since the first row in the table was returned,
write a value of 1 to TOTAL_VAR. (This is due to
the DISPLAY_TOTAL_ROWS_AT> opcode.)

3) If no errors were found, write a value of 0 to the
variable SELECT_VAR.

The next time that the SELECT_VAR variable is found to
be TRUE, the following will occur.

1) Since the value of ROW_START_VAR is now 2, read
the second row in the EMPLOYEES table.

2) Write the following values to the CRISP database:

a) Take the value found in the LAST_NAME column
for the second row and write it to the CRISP
variable LAST_VAR

b) Take the value found in the FIRST_NAME column
for the second row and write it to the CRISP
variable FIRST_VAR.

c) Since the row returned was row 2, the next
available row is row 3; therefore write the value
of 3 to ROW_START_VAR.

d) Since the last row was not found, write a value
of 0 to COMMIT_VAR.

e) Since the second row in the table was returned,
write a value of 2 to TOTAL_VAR.

3) If no errors were found, write a value of 0 to the
variable SELECT_VAR.

(Continued on next page.)

Configuring Datagate

40 Datagate User's Guide 500 046-001

DATAGATE and SQL Statements

How To Do A SQL SELECT

Retrieving Multiple Rows (cont)

The next time that the SELECT_VAR variable is found to
be TRUE, the following will occur.

1) Since the value of ROW_START_VAR is now 3, try to
read the third row in the EMPLOYEES table. It is not
found.

2) Write the following values to the CRISP database:

a) Take the value found in the
STRING_NULL_DATA_VALUE> opcode ("No
Data")and write it to the CRISP variable
LAST_VAR.

b) Take the value found in the
STRING_NULL_DATA_VALUE> opcode ("No
Data")and write it to the CRISP variable
FIRST_VAR.

c) Since a row was not returned, the next available
row is row 1, therefore write the value of 1 to
ROW_START_VAR.

d) Since the last row was found, write a value of 1
to COMMIT_VAR.

e) Since the second row in the table was the last to
be returned, write a value of 2 to TOTAL_VAR.

3) If no errors were found, write a value of 0 to the
variable SELECT_VAR.

4) Because COMMIT_VAR is now set, issue a COMMIT
and write a value of 0 to the COMMIT_VAR variable.

Configuring Datagate

500 046-001 Datagate User's Guide 41

DATAGATE and SQL Statements (cont)

Adhoc SQL

Adhoc SQL is the ability to take the entire SQL statement itself
from CRISP variables. Users may consecutively list the
SQL_STATEMENT> opcode many times in the UCF with the
names of STRING variables that are to hold a SQL statement.
When the trigger associated with the SQL statement is TRUE,
DATAGATE will read each of the variables, concatenating them
together until the last character found is a semicolon (;).

Users may also use a combination of CRISP variables and hard-
coded default values which will be concatenated together when
the associated trigger becomes TRUE.

As an example, suppose users wished to create a table at the end
of each day. The columns in the tables would be the same, but
the name of the table would be dependent on some criteria
established in a CRISP application logic. Users would do the
following in the UCF.

ENABLE_RDBMS_COMMAND> ; CREATE
SQL_STATEMENT> ; "CREATE TABLE"
SQL_STATEMENT> TABLE_NAME_VAR ;
SQL_STATEMENT> ; "(COLUMN_1 CHAR(5),
SQL_STATEMENT> ; " COLUMN_2 REAL,
SQL_STATEMENT> ; " COLUMN_3 LONG);"
DISPLAY_SQLCODE_AT> CREATE_STATUS_VAR ;
DISPLAY_SQL_DONE_AT> TABLE_CREATED_VAR ;
EXECUTE_COMMIT_AND_CLR_IF> CREATE_TABLE_VAR ;
DISABLE_RDBMS_COMMAND> ; CREATE

While highly flexible, the previous scenario is CPU intensive.
Use this feature only if speed is not an issue. Also, where
possible, avoid placing these types of SQL statements in the
same logical transaction as SQL statements that are time critical.

Another example of the capability to specify SQL statements in
CRISP variables is the following.

SQL_STATEMENT> ; "SELECT LAST_NAME, FIRST_NAME"
SQL_STATEMENT> ; "INTO #LAST_VAR, #FIRST_VAR"
SQL_STATEMENT> ; "FROM EMPLOYEES"
SQL_STATEMENT> ; "ORDER BY"
SQL_STATEMENT> ORDER_VAR ;
SQL_STATEMENT> ; ";"
ROW_COUNT> ; 1
ROW_START> ROW_START_VAR ;
DISPLAY_NEXT_ROW_INDEX_AT> ROW_START_VAR ;
DISPLAY_SQLCODE_AT> SELECT_STATUS_VAR ;
DISPLAY_SQL_DONE_AT> SELECT_DONE_VAR ;
DISPLAY_END_OF_DATA_AT> COMMIT_VAR ;
EXECUTE_AND_CLR_IF> SELECT_TRIGGER_VAR ;
COMMIT_AND_CLR_IF> COMMIT_VAR ;

(Continued on next page.)

Configuring Datagate

42 Datagate User's Guide 500 046-001

DATAGATE and SQL Statements

Adhoc SQL (cont)

In the previous example, the name of the column to sort by has
not been specified in the SQL statement. Instead, its value is to
come from a CRISP variable. Depending on the value of the
CRISP variable (which must be the name of a column in the
EMPLOYEES table), the data will be sorted differently.

DATAGATE and SQL Statements (cont)

Retrieving Data From Multiple CRISP Databases

Users do not need to limit SQL statements that retrieve data from
a single CRISP database. Simply use the ADB_NODE> and
ADB_IDENT> opcodes for one database, and then use the full
variable specification for any variables not in the default
node/database. The following is a simple example.

ADB_NODE> ; "AZVAX1"
ADB_IDENT> ; "TAGTST"
SQL_STATEMENT> ; "INSERT INTO EMPLOYEES"
SQL_STATEMENT> ; "(EMPLOYEE_ID, LAST_NAME, FIRST_NAME)"
SQL_STATEMENT> ; "VALUES"
SQL_STATEMENT> ; "(#EMP_VAR, #CSPTST:LAST_VAR,"
SQL_STATEMENT> ; "#AZVAX2::FIRST_VAR);"
EXECUTE_IF> AZVAX3::TSTTST:TRIGGER_VAR ;

The following table shows where each of the four CRISP
variables are located.

 Variable Name CRISP Node CRISP Database

EMP_VAR AZVAX1 TAGTST
LAST_VAR AZVAX1 CSPTST
FIRST_VAR AZVAX2 TAGTST
TRIGGER_VAR AZVAX3 TSTTST

Configuring Datagate

500 046-001 Datagate User's Guide 43

NULL Data The concept of a NULL is very important in relational database theory,
however there is no similar concept in the CRISP language. A means is
therefore provided to interpret NULL data in the relational database.
Users will use the *_NULL_DATA_VALUE> opcodes, along with the
NULLS_CHECKING> opcode so that data is correctly interpreted by
DATAGATE.

First, when SELECTing data from the relational database and writing that
data back to CRISP, it is possible that a value in a relational column IS
NULL. This means that there is no data to write back to CRISP.
DATAGATE will write the values to CRISP that are associated with the
following opcodes:

 CRISP Data Type DATAGATE Opcodes Default Value

STRING STRING_NULL_DATA_VALUE> ""
LONG NUMERIC_NULL_DATA_VALUE> -99
NUMERIC NUMERIC_NULL_DATA_VALUE> -99
FLOAT FLOAT_NULL_DATA_VALUE> -99.0
LOGICAL BIT_NULL_DATA_VALUE> 0

Users may use these defaults, or may use the opcodes to override the
default values. Each of the above opcodes may be used with a CRISP
variable, however only one of each of the above opcodes may appear in
each logical transaction.

If users need to write NULL values to a relational database column, the
NULLS_CHECKING> opcode is used. The tokens ON and OFF are
provided to determine whether a NULL or a value is to be written to the
relational database. If a NULL is to be written to the relational database
NULLS_CHECKING must be ON and the value found in the CRISP variable
must be the same as the corresponding null data value.

As an example:

SET_VAR_TO>> FLOAT_VAR ; -99.0
SET_VAR_TO>> NUMBER_VAR ; 2200
FLOAT_NULL_DATA_VALUE> ; -99.0
!
NULLS_CHECKING> ; ON
SQL_STATEMENT> ; "INSERT INTO TEST_TABLE"
SQL_STATEMENT> ; "(FLOAT_COL_1, NUMERIC_COL_1)"
SQL_STATEMENT> : "VALUES"
SQL_STATEMENT> ; "(#FLOAT_VAR, #NUMBER_VAR);"
EXECUTE_IF> TRIGGER_VAR ;
!
NULLS_CHECKING> ; OFF
SQL_STATEMENT> ; "INSERT INTO TEST_TABLE"
SQL_STATEMENT> ; "(FLOAT_COL_1, NUMERIC_COL_1)"
SQL_STATEMENT> : "VALUES"
SQL_STATEMENT> ; "(#FLOAT_VAR, #NUMBER_VAR);"
EXECUTE_AND_CLR_IF> TRIGGER_VAR ;

(Continued on next page.)

Configuring Datagate

44 Datagate User's Guide 500 046-001

NULL Data (cont) When TRIGGER_VAR is true, two rows will be written to the table
TEST_TABLE as follows:

FLOAT_COL_1 NUMERIC_COL_1

NULL 2200
-99.0 2200

It is NOT possible to use NULLS_CHECKING to bypass the IS NULL
portion of a SQL WHERE clause. If you need to retrieve rows where a
column value IS NULL, the WHERE clause of the SQL statement must
contain the IS NULL predicate.

Supported Data TypesThe following table describes the CRISP and RDBMS data types that
will be supported. It should be noted that the data types in the RDBMS
column are ANSI Standard SQL keywords.

 CRISP RDBMS SIZE

NUMERIC SMALLINT 2 BYTE
LONG INTEGER 4 BYTE
INTERMEDIATE SMALLINT 2 BYTE
FLOAT REAL 4 BYTE
STRING CHAR(n) n BYTE

DATAGATE will automatically perform numeric data type conversions
(i.e., CRISP FLOAT to RDBMS INTEGER or RDBMS SMALLINT to CRISP
LONG, as necessary). DATAGATE does not support character to
numeric or numeric to character conversions.

In addition, DATAGATE supports data transfers in and out of the
RDBMS DATE data type as follows.

 From To

CRISP LONG RDBMS DATE
CRISP STRING RDBMS DATE
RDBMS DATE CRISP LONG
RDBMS DATE CRISP STRING

When DATAGATE encounters a transfer of data from an RDBMS DATE
type to a CRISP STRING type, it will write the date to the string in the
standard VMS character date format:

DD-MMM-YYYY HH:MM:SS.SS

Similarly, when DATAGATE performs a CRISP STRING to RDBMS
DATE transfer, the CRISP STRING must contain data in the above
specified format (IE 14-JUL-1990 23:00:00.00).

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 45

Supported Data TypesWhen DATAGATE encounters a transfer of data from an RDBMS
DATE to a

(cont) CRISP LONG , it will interpret the date as the number of seconds since the
default zero date and write that value as an integer to the specified CRISP
variable; a negative value means that the date returned by the RDBMS
was prior to the default zero date; a positive value means that the date is
after the default zero date. Unless users override the zero date using the
ZERO_DATE> opcode, the default zero date is:

"01-APR-1970 00:00:00.00"

Refer to the description of the ZERO_DATE> opcode in the Opcode
Definitions section.

Similarly, for conversions from CRISP LONG variables to RDBMS DATE
columns, the data in the CRISP variable will be interpreted as the number
of seconds since the zero date before it is converted to the RDBMS DATE
type.

By providing the two types of DATE conversions, DATAGATE allows
users the ability to display dates on CRISP workstations (using STRING
variables), or to easily compare dates in the application logic (using
LONG variables).

DATAGATE DATE Functions The predefined DATE functions provide users with a
simple way to timestamp records that are written to the relational
database. The following two functions are provided.

• #<SYSTEM_DATE>
• #<SYSTEM_TIME>

When #<SYSTEM_TIME> is specified, DATAGATE takes the current
time from the VMS clock and stores that value in the associated column.
When #<SYSTEM_DATE> is specified, the hour:minute:second portion of
the time is zeroed, so that the time written to the database is midnight
while the date portion remains unchanged.

The following is an example of an INSERT statement using the time
function.

SQL_STATEMENT> ; "INSERT INTO BATCH_REPORT"
SQL_STATEMENT> ; "(TIMESTAMP, BATCH_NUMBER, LOT_VALUE)"
SQL_STATEMENT> ; "VALUES ("
SQL_STATEMENT> ; "#<SYSTEM_TIME>, #BATCH_VAR,
SQL_STATEMENT> ; "#LOT_VAR);"

In the example, the TIMESTAMP column in the BATCH_REPORT table
could be any of the RDBMS data types: DATE, CHAR, or INTEGER.
DATAGATE will perform the DATE conversion for any of these types.

Configuring Datagate

46 Datagate User's Guide 500 046-001

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 47

DATAGATE DATE Functions For Rdb/VMS, the date functions may also be used as
part of the WHERE

(cont) clause in a SQL SELECT , UPDATE, or DELETE statement:

SQL_STATEMENT> ; "SELECT BATCH_REPORT_NUMBER,"
SQL_STATEMENT> ; "SWITCH_VALUE"
SQL_STATEMENT> ; "INTO #BATCH_NUMBER_VAR, #SWITCH_VAL"
SQL_STATEMENT> ; "FROM SOME_TABLE"
SQL_STATEMENT> ; "WHERE TIMESTAMP = #<SYSTEM_DATE>"

Due to limitations in the Ingres Dynamic SQL interface, DATE ↔ LONG
conversions and DATE functions are not allowed in the WHERE clause of
an UPDATE, SELECT, or DELETE statement.

Using CRISP ArraysBy using CRISP arrays, users will be able to INSERT or SELECT more
than one row at time. The ROW_COUNT> opcode is used to tell
DATAGATE either how many rows to INSERT or how many rows to
SELECT. The ROW_COUNT> opcode is ignored for all other types of
SQL statements.

ROW_COUNT> And The SQL INSERT Statement

For INSERT statements, the ROW_COUNT> opcode tells
DATAGATE how many rows are to be inserted; it also is the
number of CRISP array elements that are to be used to make up
those rows.

Given the following portion of a UCF.

SQL_STATEMENT> ; "INSERT INTO SHIFT_AVERAGES"
SQL_STATEMENT> ; "(TIMESTAMP, ENG_UNIT_NUM,"
SQL_STATEMENT> ; "ENG_UNIT_VALUE)"
SQL_STATEMENT> ; "VALUES"
SQL_STATEMENT> ; "#<SYSTEM_TIME>, #ENG(0),"
SQL_STATEMENT> ; "#ENGVL(0));"
DISPLAY_SQLCODE_AT> STATUS_VAR ;
DISPLAY_SQL_DONE_AT> SQL_DONE_VAR ;
ROW_COUNT> ; 5
EXECUTE_COMMIT_AND_CLR_IF> EXECUTE_VAR ;

When the variable EXECUTE_VAR is TRUE, DATAGATE will
perform the following:

1) Read the CRISP variables so that 5 rows are inserted into the
specified table as follows:

 TIMESTAMP ENG_UNIT ENG_UNIT_VALUE
Row 1: INSERT Time Value of ENG(0) Value of ENGVL(0)
Row 2: INSERT Time Value of ENG(1) Value of ENGVL(1)
Row 3: INSERT Time Value of ENG(2) Value of ENGVL(2)
Row 4: INSERT Time Value of ENG(3) Value of ENGVL(3)
Row 5: INSERT Time Value of ENG(4) Value of ENGVL(4)

Configuring Datagate

48 Datagate User's Guide 500 046-001

(Continued on next page.)

Configuring Datagate

500 046-001 Datagate User's Guide 49

Using CRISP Arrays

ROW_COUNT> And The SQL INSERT Statement (cont)

2) If no errors are found, issue a COMMIT.

3) Write the RDBMS SQLCODE value (which will be 0 if there
are no errors) to the STATUS_VAR variable.

4) If no errors are found, write a value of 1 to SQL_DONE_VAR
and a value of 0 to EXECUTE_VAR.

In this particular example, the TIMESTAMP column values are
not guaranteed to be the same; the time value itself is determined
at the exact moment that DATAGATE builds the row. See the
section titled "Combining Arrays and Single Values" for
information on how to insert multiple rows with a single
<SYSTEM_TIME> value.

ROW_COUNT>, ROW_START> And The SQL SELECT Statement

DATAGATE users have the ability to bring in multiple rows from a
query by using the ROW_COUNT> opcode to indicate how many
contiguous CRISP database variables are available to hold data, and
then to specify the first of these variables in the SQL statement. The
ROW_START> opcode is used to indicated to DATAGATE which
row in the query is to be returned as the first row to the CRISP
database. By using the DISPLAY_NEXT_ROW_INDEX_AT> opcode
in conjunction with ROW_START>, this process is easily
maintained.

Here is an example from a UCF file.

SQL_STATEMENT> ; "SELECT ENG_UNIT_NUM, ENG_UNIT_VALUE"
SQL_STATEMENT> ; "INTO #ENGU(0), #ENGVAL(4)"
SQL_STATEMENT> ; "FROM SHIFT_AVERAGES"
SQL_STATEMENT> ; "WHERE ENG_UNIT_NUM"
SQL_STATEMENT> ; "= #ENGUVAL"
SQL_STATEMENT> ; "ORDER BY ENG_UNIT_VALUE;"
ROW_START> ROW_START_VAR ;
ROW_COUNT> ; 5
DISPLAY_NEXT_ROW_INDEX_AT> ROW_START_VAR ;
DISPLAY_END_OF_DATA_AT> COMMIT_VAR ;
EXECUTE_AND_CLR_IF> EXECUTE_VAR ;
COMMIT_IF> COMMIT_VAR ;

Assume for purposes of this example that the value of CRISP
variable ENGUVAL is 10, and that table SHIFT_AVERAGES has 9
rows where the value of column ENG_UNIT_NUM is 10. Also
assume that ROW_START_VAR has a value of 1 when
EXECUTE_VAR is set and that no RDBMS errors are found. The
first time that EXECUTE_VAR is set, the following takes place.

(Continued on next page.)

Configuring Datagate

50 Datagate User's Guide 500 046-001

Using CRISP Arrays

ROW_COUNT>, ROW_START> And The SQL SELECT Statement
(cont)

1) The value of ENGUVAL will be read from CRISP and placed
in the SQL statement.

2) Five rows (the ROW_COUNT> value) will be returned to
CRISP as follows.

Values from Row 1 are written to: ENGU(0) & ENGVAL(4)
Values from Row 2 are written to: ENGU(1) & ENGVAL(5)
Values from Row 3 are written to: ENGU(2) & ENGVAL(6)
Values from Row 4 are written to: ENGU(3) & ENGVAL(7)
Values from Row 5 are written to: ENGU(4) & ENGVAL(8)

3) A value of 6 will be written to ROW_START_VAR; a value of
0 is written to COMMIT_VAR.

4) The trigger is cleared (a value of 0 is written to EXECUTE_VAR).

Assuming that no changes are made to any data from an
application logic, the next time EXECUTE_VAR is set, the
following takes place.

1) Five rows (the ROW_COUNT> value) will be returned to
CRISP as follows.

Values from Row 6 are written to: ENGU(0) & ENGVAL(4)
Values from Row 7 are written to: ENGU(1) & ENGVAL(5)
Values from Row 8 are written to: ENGU(2) & ENGVAL(6)
Values from Row 9 are written to: ENGU(3) & ENGVAL(7)
Null data values are returned to: ENGU(4) & ENGVAL(8)

2) A value of 1 will be written to ROW_START_VAR (since all
rows have been returned); a value of 1 is written to
COMMIT_VAR.

3) The trigger is cleared (a value of 0 is written to
EXECUTE_VAR).

4) Since COMMIT_VAR is now set, a COMMIT is issued.

The next time that EXECUTE_VAR is set, the query will start
over.

☞ Note :

Multiple row SELECTs and INSERTs are only
available into and out of CRISP arrays.

Configuring Datagate

500 046-001 Datagate User's Guide 51

Using CRISP Arrays (cont)

Combining Arrays And Single Values

Users can use this feature to insert multiple rows in a relational
database table using the ROW_COUNT> opcode, where some
values are to come from arrays, and other values are to be fixed
for each row inserted. This method may also be used to assure
that all rows inserted at the same time have the same
<SYSTEM_TIME> or <SYSTEM_DATE> value.

The manner in which DATAGATE distinguishes which values
are to remain fixed is by the appearance of an asterisk (*)
following the last character of the CRISP variable name. Given
the following excerpt from a UCF.

SQL_STATEMENT> ; "INSERT INTO SHIFT_AVERAGES ("
SQL_STATEMENT> ; "TIMESTAMP, ENG_UNIT_NUM, ENG_UNIT_TYPE,"
SQL_STATEMENT> ; "ENG_UNIT_VALUE) VALUES ("
SQL_STATEMENT> ; "#<SYSTEM_TIME>*, #ENGU(0)*, #ENGT*,"
SQL_STATEMENT> ; "#ENG_VAL(0));"
ROW_COUNT> ; 5
EXECUTE_COMMIT_AND_CLR_IF> EXECUTE_VAR ;

Because the ROW_COUNT> value is 5, DATAGATE will INSERT
5 rows into the SHIFT_AVERAGES table when EXECUTE_VAR is
TRUE. The rows inserted will be as follows:

 TIMESTAMP ENG_UNIT_NUM ENG_UNIT_VALUE
Row 1: Insert time Row 1 Value of ENGU(0) Value of ENG_VAL(0)
Row 2: Insert time Row 1 Value of ENGU(0) Value of ENG_VAL(1)
Row 3: Insert time Row 1 Value of ENGU(0) Value of ENG_VAL(2)
Row 4: Insert time Row 1 Value of ENGU(0) Value of ENG_VAL(3)
Row 5: Insert time Row 1 Value of ENGU(0) Value of ENG_VAL(4)

The asterisk (*) following the <SYSTEM_TIME> function shows that all
rows are to have the same time; the asterisk (*) following ENGU(0) shows
that this value is also to remain fixed, as does the asterisk following ENGT.

Using DATAGATE To Users will be able to write command procedures that will be
submitted

Submit Batch Jobs to a specified batch queue when a CRISP variable is TRUE. This
functionality has been provided to allow users to execute procedures on
the RDBMS machine that are triggered by events in CRISP.

The BATCH_FILE> opcode is used to specify the name of the command
procedure that is to be submitted. The value must be a full file
specification including device and directory. The file type must be
.COM. There is no default batch file.

(Continued on next page.)

Configuring Datagate

52 Datagate User's Guide 500 046-001

Using DATAGATE To Submit Batch Jobs (cont)

The BATCH_QUE> opcode is used to specify the name of the batch queue
that DATAGATE is to use when submitting the file specified in
BATCH_FILE>. The default batch queue is SYS$BATCH.

The BATCH_PARAMETER_P*> opcodes are provided to allow users to
pass parameters P1 through P8 to the command procedure.
BATCH_PARAMETER_P1 is used to specify P1, BATCH_PARAMETER_P2
is used to specify P2, etc. Users may specify the value as an default
quoted string, or a CRISP string variable may be used. If a parameter is
not specified, its value is " ".

The SUBMIT_BATCH_AND_CLR_IF> opcode specifies the name of the
crisp variable that is to be used as a trigger. When the value of the
variable is true, DATAGATE submits the file specified in the
BATCH_FILE> opcode to the queue specified in the BATCH_QUE> opcode
with the parameters specified in the optional BATCH_PARAMETER_P*
opcodes. In addition, a log file with the same directory and file name as
the .COM file are created with an extension of .LOG.

BATCH_FILE> ; "DISK$USER:[RDB.REPORTS]END_OF_BATCH.COM"
BATCH_QUE> ; "SYS$BATCH"
BATCH_PARAMETER_P1> ; "Y"
BATCH_PARAMETER_P2> ; "NONE"
BATCH_PARAMETER_P3> ; P3_STRING_VAR ;
SUBMIT_BATCH_AND_CLR_IF> REPORTS_VAR ;

Improving CPU Usage The SET_MIN_TRANSACTION_TIME_TO> opcode determines the
minimum time the opcodes in a logical transaction are processed. This
is the amount of time it takes to read all triggers, determine which SQL
statements are to be executed, read any CRISP variables necessary to
execute the SQL statements, execute the SQL statements, and write back
data to the CRISP database. The default value is 50 (centi-seconds) or
half a second. If DATAGATE determines that less than half a second
has passed from the time it starts processing a logical transaction until
the end of that logical transaction is found, then DATAGATE will
hibernate for the remaining period.

If users know that their DATAGATE application needs only read the
triggers once a minute, then the SET_MIN_TRANSACTION_TIME_TO>
opcode can be set to 6000. Less time critical applications can be set
accordingly.

Configuring Datagate

500 046-001 Datagate User's Guide 53

A Sample UCF for Rdb/VMS

 !---!
 ! !
 ! FILE NAME: DGT_RDBVMS.UCF !
 ! !
 ! LAST MODIFICATION: 20-Jul-1990 10:42 !
 ! !
 ! !
 ! DESCRIPTION: This is the actual UCF File used to test !
 ! parts of the Rdb/VMS inteface. It is !
 ! included here for your convenience. !
 ! !
 !---!
 ! !
 ! DEFINITION SECTION: !
 ! !
 ! The definition section is used to interpret Customer, !
 ! information. All opcodes documented in this section !
 ! must be present in the UCF file in order for the !
 ! CRISP/PARSER to create the needed global section !
 ! that is used by DATAGATE. !
 ! !
 !---!

 !
 DEFINE> ! Keyword to start definition
 ! section specific processing.

 !
 !---!
 ! !
 ! NOTE: !
 ! !
 ! The Customer opcodes must be present in the UCF. !
 ! Verify all Customer information for accuracy. !
 ! CRISP/PARSER will display information and errors !
 ! regarding these opcodes. When customer information !
 ! is incorrect DATAGATE will be run in DEMO mode. !
 ! !
 !---!

 !
 CUSTOMER_NAME>> ;
 CUSTOMER_LOCATION>> ;
 CUSTOMER_SW_LICENSE>> ;
 CUSTOMER_USE_LIMIT>> ;
 CUSTOMER_CONFIG_CODE>> ;
 CUSTOMER_CONFIG_ID>> ;

Configuring Datagate

54 Datagate User's Guide 500 046-001

A Sample UCF for Rdb/VMS (cont)

 !
 !---!
 ! !
 ! INITIALIZATION SECTION: !
 ! !
 ! The initialization section begins with the opcode !
 ! INIT, which is used to define values used by all !
 ! logical transactions. !
 ! !
 !---!

 !
 INIT>
 RDBMS_TYPE> ; RDBVMS ! Rdb/VMS
 ZERO_DATE> ;"13-Jun-1990" ! For DATE/LONG
 ! ! conversions

 !
 TRANSACTION_TIMEOUT_ACTION> ; COMMIT ! on TIMEOUT
 TRANSACTION_TIMEOUT> ; 3600 ! TIMEOUT after
 ! ! 30 min

 !
 SET_MIN_TRANSACTION_TIME_TO> ; 500 ! WAIT 5 secs

 !
 RDBMS_IDENT> ; "DUA0:[RDBUSER.RDBDEMO]PERSONNEL"
 STRING_NULL_DATA_VALUE> ; "Null String"
 NUMERIC_NULL_DATA_VALUE> ; -9999
 FLOAT_NULL_DATA_VALUE> ; -999.99

 !
 ADB_NODE> ; "AZVAX3" ! CRISP Node
 ADB_IDENT> ; "TAGTST" ! CRISP ADB

 !
 !---!
 ! !
 ! NOTE: !
 ! The SET_VAR_TO opcodes are used to initialize various !
 ! database variables and triggers. The PUT_IF and !
 ! GET_IF variables are all of type INTERMEDIATE. The !
 ! CRISP data types of the other variables can be !
 ! determined by the second character of the variable !
 ! name where L is LONG and S is STRING. !
 ! !
 !---!

Configuring Datagate

500 046-001 Datagate User's Guide 55

A Sample UCF for Rdb/VMS (cont)

 !
 SET_VAR_TO> RL11000 ; 0
 SET_VAR_TO> RL11001 ; 0
 SET_VAR_TO> RL11010 ; 1
 SET_VAR_TO> WS11010 ; "Starting"
 SET_VAR_TO> WS11011 ; "Starting"
 SET_VAR_TO> WS11012 ; "Starting"
 SET_VAR_TO> WL11000 ; 0
 SET_VAR_TO> WL11010 ; 0
 SET_VAR_TO> WL11011 ; 0
 SET_VAR_TO> GET_IF112 ; 0
 SET_VAR_TO> PUT_IF112 ; 0
 SET_VAR_TO> PUT_IF113 ; 0

 !
 !---!
 ! !
 ! PROCESS SECTION: !
 ! !
 ! The process section begins with the opcode PROCESS. !
 ! It marks the logical end of the definition section !
 ! and begins the process section. This section is !
 ! used to define all opcodes that DATAGATE is to !
 ! process with every logic scan. !
 ! !
 !---!

 !
 PROCESS>

 !
 !---!
 ! !
 ! LOGICAL_TRANSACTION: !
 ! !
 ! The LOGICAL_TRANSACTION opcode is used to mark a !
 ! logical transacation. One DATAGATE process will !
 ! be started for each LOGICAL_TRANSACTION opcode !
 ! in the file. A COMMIT or ROLLBACK issued within !
 ! a logical transaction affects all SQL statements !
 ! in the same logical transaction, but does not !
 ! affect SQL statements in other logical !
 ! transactions. !
 ! !
 !---!

 !
 LOGICAL_TRANSACTION> ;

Configuring Datagate

56 Datagate User's Guide 500 046-001

A Sample UCF for Rdb/VMS (cont)

 !
 !---!
 ! !
 ! Here is an example of reading several data types !
 ! out of Rdb/VMS into associated CRISP variables. !
 ! Information about a SQL statement starts following !
 ! the LOGICAL_TRANSACTION opcode and ends at the !
 ! EXECUTE type opcode. A new SQL statement starts !
 ! with the first opcode following an EXECUTE type !
 ! opcode. !
 ! !
 ! Notice in the following example that the same DATE !
 ! column is selected twice, once into a CRISP STRING !
 ! variable and next into a CRISP LONG variable. !
 ! !
 !---!

 !
 ROW_START> RL11010 ;
 ROW_COUNT> ; 1
 DISPLAY_NEXT_ROW_INDEX_AT> RL11010 ;
 DISPLAY_END_OF_DATA_AT> PUT_IF112 ;
 DISPLAY_SQL_DONE_AT> PUT_IF113 ;
 DISPLAY_RDBMS_STATUS_AT> RL11000 ;

 !
 SQL_STATEMENT> ; "SELECT LAST_NAME, FIRST_NAME,"

 SQL_STATEMENT> ; "SALARY_START, SALARY_START,"
 SQL_STATEMENT> ; "SALARY_AMOUNT"
 SQL_STATEMENT> ; "INTO #WS11010, #WS11011, #WS11012,"
 SQL_STATEMENT> ; "#WL11011, #WL11010"
 SQL_STATEMENT> ; "FROM CURRENT_SALARY"
 SQL_STATEMENT> ; "WHERE LAST_NAME STARTING WITH 'R'"
 SQL_STATEMENT> ; "ORDER BY LAST_NAME;"

 !
 EXECUTE_AND_CLR_IF> GET_IF112 ;

 !
 !---!
 ! !
 ! When the last row is found (DISPLAY_END_OF_DATA_AT>), !
 ! a COMMIT will be issued and this DATAGATE process !
 ! will exit. !
 ! !
 !---!

 !
 COMMIT_AND_CLR_IF> PUT_IF112 ;
 EXIT_IF> PUT_IF112 ;

Configuring Datagate

500 046-001 Datagate User's Guide 57

A Sample UCF for Rdb/VMS (cont)

 !
 !---!
 ! !
 ! This next example takes some of the values read !
 ! from the above table and INSERTs new rows into a !
 ! different table. Notice too, that the trigger for !
 ! this INSERT statement is set by the !
 ! DISPLAY_SQL_DONE_AT> opcode for the earlier SELECT !
 ! statement and that when this INSERT statement !
 ! finishes, it sets the trigger so that the above !
 ! SELECT statement retrieves its next row. !
 ! !
 ! Notice also that it does not matter if the !
 ! SQL_STATEMENT> opcodes are before the DISPLAY type !
 ! opcodes or not. A SQL statement begins immediately !
 ! following the LOGICAL_TRANSACTION opcode until !
 ! an opcode of EXECUTE type is found; then a new SQL !
 ! statement starts. !
 ! !
 !---!

 !
 SQL_STATEMENT> ; "INSERT INTO TEST_TABLE (NAME_COLUMN,"
 SQL_STATEMENT> ; "DATE_COLUMN, DOUBLE_COLUMN)"
 SQL_STATEMENT> ; "VALUES"
 SQL_STATEMENT> ; "(#WS11010, #WL11011, #WL11010);"

 !
 ROW_COUNT> ; 1
 DISPLAY_SQL_DONE_AT> GET_IF112 ;
 DISPLAY_RDBMS_STATUS_AT> RL11001 ;

 !
 EXECUTE_AND_CLR_IF> PUT_IF113 ;
 !
 !---!
 ! !
 ! Display the current scan counter !
 ! !
 !---!
 !
 ADD_TO_VAR> WL11000 ; 1
 !
 !---!
 ! !
 ! END SECTION: !
 ! !
 ! The end section defines the logical end of the UCF !
 ! file. Any opcodes or comments declared after this !
 ! opcode are ignored by CRISP/PARSER. !
 ! !
 !---!
 !
 END>

Configuring Datagate

58 Datagate User's Guide 500 046-001

Notes:

Opcode Definitions

500 046-001 Datagate User's Guide 59

General The opcodes are defined here in alphabetical order. Unless otherwise
noted, the opcode is legal in any of the User Configuration File (UCF)
sections defined previously.

☞ Note :

The parameter values in the following definitions are
shown here as decimal values, and are included for use
with the Application Database (ADB) variable parameter.

It is not necessary to supply an opcode if the default parameter matches
your requirements.

ADB_IDENT> Opcode which specifies the name or identity of the desired ADB. This
opcode MUST be used prior to any ADB variable reference, unless that
opcode includes an ADB ID name followed by a colon. The ADB variable
portion of the statement is currently not supported. If the default entry
is a string then it must be enclosed in double quotes in order to avoid
confusion with token definitions or absolute values.

Example: ADB_IDENT> ;"TRAIN1" ! Database name

Default: (Not supported)

ADB_NODE> Opcode which specifies the node where the ADB_IDENT> value is
located. The ADB variable portion of the statement is not currently
supported. If the ADB_IDENT> opcode is found before an ADB_NODE>
opcode is found, then the node for that particular ADB_IDENT> will be
the node that DATAGATE is running on.

Example: ADB_NODE> ; "AZVAX2" ! Node for TRAIN1 database

Default: Current Node

ADB_TYPE> Opcode which specifies the Applications Database type. Currently only
one type of ADB is supported. The ADB variable portion of the statement
is not currently supported.

Example: ADB_TYPE> ;CRISP32 ! type of database

Default: CRISP32

Opcode Definitions

60 Datagate User's Guide 500 046-001

ADD_TO_VAR> Opcode which allows the user to add a predetermined value to an ADB
memory location. Generally used to increment a pass counter by adding
one at the top or bottom of the UCF, but will add any legal value
supplied on the right side of the semicolon, including both integer and
real values, as well as any of the Tokens defined for any of the other
opcodes. Consult the ADB addendums for legal parameter values. The
opcode requires a CRISP variable. Regardless of the position of this
opcode in the UCF, the add will not take place until the end of a logical
transaction pass.

Example: ADD_TO_VAR> pass_count; ! Count each pass

Default: 1

BIT_NULL_DATA_VALUE>
Opcode which specifies the value to be written to an INTERMEDIATE
variable in the CRISP ADB in the event that a SQL SELECT statement
determines that the field in the relational database table associated with
the INTERMEDIATE variable has no data. If placed in the INIT> section,
the value will be valid for all logical transactions in the UCF, otherwise,
there should only be one instance of this opcode per logical transaction.
On a logical transaction basis, this is a One Shot opcode.

Example: BIT_NULL_DATA_VALUE> ; 1

Default: 0

BATCH_FILE> This opcode enables the user to specify the name of a command file
which will be submitted to a batch queue (specified by the BATCH_QUE>
opcode) when a CRISP variable (specified by the
SUBMIT_BATCH_AND_CLR_IF> opcode) is true. The full file
specification for the file, including device and directory must be
included. In addition, the file specification must be in a quoted string.

Example: BATCH_FILE> ; "DISK$USER:[RDB.REPORTS]END_OF_SHIFT.COM"

Default: None

BATCH_QUE> This opcode enables the user to specify the name of a batch queue to
which a command file (specified by the BATCH_FILE> opcode) will be
submitted when a CRISP variable (specified by the
SUBMIT_BATCH_AND_CLR_IF> opcode) is true. The name of the queue
must be in a quoted string.

Example: BATCH_QUE> ; "REPORTSQUE"

Default: SYS$BATCH

Opcode Definitions

500 046-001 Datagate User's Guide 61

BATCH_PARAMETER_P1>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P1 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P1> ; "Value of P1"

Default: " "

BATCH_PARAMETER_P2>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P2 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P2> ; "Value of P2"

Default: " "

BATCH_PARAMETER_P3>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P3 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P3> ; "Value of P3"

Default: " "

BATCH_PARAMETER_P4>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P4 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P4> ; "Value of P4"

Default: " "

Opcode Definitions

62 Datagate User's Guide 500 046-001

BATCH_PARAMETER_P5>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P5 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P5> ; "Value of P5"

Default: " "

BATCH_PARAMETER_P6>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P6 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P6> ; "Value of P6"

Default: " "

BATCH_PARAMETER_P7>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P7 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P7> ; "Value of P7"

Default: " "

BATCH_PARAMETER_P8>
This opcode enables is used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P8 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have a CRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH_PARAMETER_P8> ; "Value of P8"

Default: " "

Opcode Definitions

500 046-001 Datagate User's Guide 63

CLEAR_STATUS_IF> This opcode must have a CRISP variable. When the value of the
variable is non-zero, both the primary and secondary status values are
set to zero. This opcode should be used in conjunction with the
PRIMARY_STATUS_AT> and the SECONDARY_STATUS_AT> opcodes to
aid application logic in handling error conditions.

Example: CLEAR_STATUS_IF> CLR_STATUS ;

Default: None

COMMIT_AND_CLR_IF> This opcode must have a CRISP variable. If the value of the
variable is non-zero, then a SQL COMMIT will be issued and the value
of the CRISP variable will be set to 0. The COMMIT will affect the entire
logical transaction.

Example: COMMIT_AND_CLR_IF> commit_var ;

Default: None

COMMIT_IF> It is strongly suggested that this opcode have a CRISP variable; if not, a
COMMIT will be issued every pass of a logical transaction depending on
the default value. If the value of the variable is non-zero, then a
COMMIT will be issued. The COMMIT will affect the entire logical
transaction.

Example: COMMIT_IF> commit_var ;

Default: None

CUSTOMER_CONFIG_CODE>
Opcode which specifies the customer's configuration code to
DATAGATE. Must be entered exactly as specified on your licensing
agreement. Must be specified before the process section, immediately
following the CUSTOMER_USE_LIMIT> opcode and immediately
preceding the CUSTOMER_CONFIG_ID> opcode in the DEFINE> section
of the UCF.

CUSTOMER_CONFIG_ID>
Opcode which specifies the customer's configuration identifier to
DATAGATE. Must be entered exactly as specified on your licensing
agreement. Must be specified before the process section, immediately
following the CUSTOMER_CONFIG_CODE> opcode in the DEFINE>
section of the UCF.

Opcode Definitions

64 Datagate User's Guide 500 046-001

CUSTOMER_LOCATION>
Opcode which specifies the customer's configuration location to
DATAGATE. Must be entered exactly as specified on your licensing
agreement, enclosed in double quotes (" "). Must be specified before
the process section, immediately following the CUSTOMER_NAME>
opcode and immediately preceding the CUSTOMER_SW_LICENSE>
opcode in the DEFINE> section of the UCF.

CUSTOMER_NAME> Opcode which specifies the customer's configuration name to
DATAGATE. Must be entered exactly as specified on your licensing
agreement, enclosed in double quotes (" "). Must be specified before
the process section, immediately preceding the CUSTOMER_LOCATION>
opcode and immediately following the DEFINE> opcode in the UCF.

CUSTOMER_SW_LICENSE>
Opcode which specifies the customer's configuration software license
code to DATAGATE. Must be entered exactly as specified on your
licensing agreement. Must be specified before the process section,
immediately following the CUSTOMER_LOCATION> opcode and
immediately preceding the CUSTOMER_USE_LIMIT> opcode in the
DEFINE> section of the UCF.

CUSTOMER_USE_LIMIT>
Opcode which specifies the customer's configuration use limit code to
DATAGATE. Must be entered exactly as specified on your licensing
agreement. Must be specified before the process section, immediately
following the CUSTOMER_SW_LICENSE> opcode and immediately
preceding the CUSTOMER_CONFIG_CODE> opcode in the DEFINE>
section of the UCF.

DEFINE> Opcode which designates the start of the definition section. All opcodes
in this section are automatically 'one shot' regardless of the number of
right angle brackets supplied.

Example: DEFINE> ! Begin definition section

Default: (No parameters)

Opcode Definitions

500 046-001 Datagate User's Guide 65

DISABLE_RDBMS_COMMAND>
Opcode specifying which of the RDBMS commands are to be disabled
and prevented from executing. If an RDBMS command has been
disabled, then any SQL statement found which begins with the command
will not be executed. Instead, an error will be generated. This opcode
may be placed in the Init Section or the Process Section.

 Parameter Token
100 ALTER
101 COMMENT
102 CREATE
103 DELETE
104 DROP
105 GRANT
106 INSERT
107 REVOKE
139 SELECT
109 UPDATE

Example: DISABLE_RDBMS_COMMAND> ; SELECT ! Disable SELECTs

Default: ALTER, COMMENT, DELETE, DROP, GRANT, REVOKE and
UPDATE

DISPLAY_END_OF_DATA_AT>
This opcode only has meaning for SQL SELECT statements; it requires a
CRISP variable; any default value will be ignored. When the last row in
a query has been returned, the DATAGATE will write a value of 1 to the
variable, otherwise a value of 0 will be written. This value is only
written if there were no errors in the SQL statement that was executed.
There may be one DISPLAY_END_OF_DATA_AT> opcode per execute
type opcode (EXECUTE_IF>, EXECUTE_COMMIT_IF>,
EXECUTE_AND_CLR_IF>, or EXECUTE_COMMIT_AND_CLR_IF>).

Example: DISPLAY_END_OF_DATA_AT> EOD ; ! End of data?

Default: Not applicable

Opcode Definitions

66 Datagate User's Guide 500 046-001

DISPLAY_MORE_DATA_AT>
This opcode only has meaning for SQL SELECT statements; it requires a
CRISP variable; any default value will be ignored. If the last row in a
query has not been returned, the DATAGATE will write a value of 1 to
the variable, otherwise, when the last row has been returned, a value of
0 will be written. This value is only written if there were no errors in
the SQL statement that was executed. There may be one
DISPLAY_MORE_DATA_AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DISPLAY_MORE_DATA_AT> EOD ; ! More rows?

Default: Not applicable

DISPLAY_NEXT_ROW_INDEX_AT>
This opcode only has meaning for SQL SELECT statements; it requires a
CRISP variable; any default value will be ignored. It is used in
conjunction with the ROW_START> opcode to easily retrieve rows in a
table by groups. For example, if the row start value is 1, and the row
count value is 5, DATAGATE will return rows 1 through 5 as found in
the query. The next row index value of 6 will be written to the variable
associated with this opcode. When all rows in a query have been
retrieved, the default value found for the ROW_START> opcode will be
written to the variable associated with this opcode. It is suggested that
the variable for the DISPLAY_NEXT_ROW_INDEX_AT> opcode and the
variable for the ROW_START> opcode be the same. This value is only
written if there were no errors in the SQL statement that was executed.
There may be one DISPLAY_NEXT_ROW_INDEX_AT> opcode per execute
type opcode (EXECUTE_IF>, EXECUTE_COMMIT_IF>,
EXECUTE_AND_CLR_IF>, or EXECUTE_COMMIT_AND_CLR_IF>).

Example: DISPLAY_NEXT_ROW_INDEX_AT>ROW_START_VAR ;

Default: Not applicable

Opcode Definitions

500 046-001 Datagate User's Guide 67

DISPLAY_RDBMS_STATUS_AT>
This opcode provides users with a means to determine the RDBMS
specific status returned by the RDBMS when a SQL statement is
executed; it requires a CRISP variable. It is only returned when the
statement is executed, that is with the EXECUTE_IF>,
EXECUTE_CLR_IF>, EXECUTE_COMMIT_IF>, and the
EXECUTE_COMMIT_AND_CLR_IF> opcodes. (The status will not be
written for the COMMIT_IF> and ROLLBACK_IF> opcodes). For
Rdb/VMS, the value returned will be the value of RDB$LU_STATUS
which is returned in the RDB$MESSAGE_VECTOR by SQL. The values of
RDB$LU_STATUS follow the usual VAX/VMS standards for status values.
(See the Rdb/VMS Guide to Using SQL for detailed information.) This
value is written regardless of whether any errors were found during
execution of the SQL statement. There may be one
DISPLAY_RDBMS_STATUS_AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DISPLAY_RDBMS_STATUS_AT> RDBMS_STATUS_VAR ;

Default: Not applicable

DISPLAY_SQLCODE_AT>
This opcode provides users with a means to determine the SQL status
returned by the RDBMS when a SQL statement is executed; it requires a
CRISP variable. It is only returned when the statement is executed, that
is with the EXECUTE_IF>, EXECUTE_CLR_IF>, EXECUTE_COMMIT_IF>,
and the EXECUTE_COMMIT_AND_CLR_IF> opcodes. (The status will not
be written for the COMMIT_IF> and ROLLBACK_IF> opcodes). The
value returned will be the SQLCODE value for the particular RDBMS.
While exact values are RDBMS specific, in general, a value of 0 means
success, a positive value is a warning or exception condition, and a
negative value is an error. This value is written regardless of whether
any errors were found during execution of the SQL statement. There
may be one DISPLAY_SQLCODE_AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DISPLAY_SQLCODE_AT> SQLCODE_VAR ;

Default: Not applicable

Opcode Definitions

68 Datagate User's Guide 500 046-001

DISPLAY_SQL_DONE_AT>
This opcode must have a CRISP variable. DATAGATE will write a
value of 1 to the variable when a SQL statement is finished executing.
Users may use this feature to "chain" SQL statements, that is to trigger
SQL statement 2 when SQL statement 1 is finished. This value is only
written if there were no errors in the SQL statement that was executed.
There may be one DISPLAY_SQL_DONE_AT> opcode per execute type
opcode (EXECUTE_IF>, EXECUTE_COMMIT_IF>,
EXECUTE_AND_CLR_IF>, or EXECUTE_COMMIT_AND_CLR_IF>).

Example: DISPLAY_SQL_DONE_AT> NEXT_TRIGGER_VAR ;

Default: None

DISPLAY_TOTAL_ROWS_AT>
This opcode only has meaning for SQL SELECT statements; it requires a
CRISP variable; any default value will be ignored. DATAGATE will
write the total number of rows written for a single query. For instance,
the user requests all rows in a table, 5 at a time. After the first execution
of the query, a value of 5 is written to the DISPLAY_TOTAL_ROWS_AT>
variable; after the second execution, a value of 10 is written. This
continues until the last row is found. This value is only written if there
were no errors in the SQL statement that was executed. There may be
one DISPLAY_TOTAL_ROWS_AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DISPLAY_TOTAL_ROWS_AT> TOTAL_ROWS_VAR ;

Default: Not applicable

Opcode Definitions

500 046-001 Datagate User's Guide 69

ENABLE_RDBMS_COMMAND>
Opcode which specifies which of the RDBMS commands are to be
enabled and allowed to execute. Unless an RDBMS command has been
enabled, any SQL statement found which begins with the command will
not be executed. Instead, an error will be generated.

 Parameter Token
100 ALTER
101 COMMENT
102 CREATE
103 DELETE
104 DROP
105 GRANT
106 INSERT
107 REVOKE
139 SELECT
109 UPDATE

Example: ENABLE_RDBMS_COMMAND> ; CREATE ! Enable CREATEs

Default: INSERT and SELECT

END> Opcode which signifies the end of the UCF file, and thus the end of the
logical process path. Anything following this opcode is ignored.

Example: END> ! End of processing

Default: (No parameters)

EXECUTE_AND_CLR_IF>
This opcode requires a CRISP variable; any default value found will be
ignored. The variable associated with this opcode is called a "trigger"
variable. When its value is non-zero, the associated SQL statement will
be executed. If no errors are found during execution, DATAGATE will
then change the value of the variable to zero.

Example: EXECUTE_AND_CLR_IF> EXECUTE_VAR ;

Default: None

Opcode Definitions

70 Datagate User's Guide 500 046-001

EXECUTE_COMMIT_AND_CLR_IF>
This opcode requires a CRISP variable; any default value found will be
ignored. The variable associated with this opcode is called a 'trigger'
variable. When its value is non-zero, the associated SQL statement will
be executed. If no errors are found during the execution, a SQL
COMMIT will be issued and DATAGATE will then change the value of
the variable to zero.

Example: EXECUTE_COMMIT_AND_CLR_IF> EXECUTE_VAR ;

Default: None

EXECUTE_COMMIT_IF> It is strongly suggested that this opcode have a CRISP variable.
If so, the variable associated with this opcode is called a 'trigger'
variable. When its value is non-zero, the associated SQL statement will
be executed. If no errors are found during the execution, a SQL
COMMIT will be issued.

Example: EXECUTE_COMMIT_IF> EXECUTE_VAR ;

Default: None

EXECUTE_IF> It is strongly suggested that this opcode have a CRISP variable. If so,
the variable associated with this opcode is called a "trigger" variable.
When its value is non-zero, the associated SQL statement will be
executed.

Example: EXECUTE_IF> EXECUTE_VAR ;

Default: None

EXIT_IF> Opcode for user to supply an ADB variable or a default value, which will
allow a conditional exit, on a Logical Transaction basis. A manual
restart will be required after such an exit. Legal values are zero (0) and
non-zero. Any supplied default value is only used if no ADB variable
name is supplied or if, for some reason, the system is unable to access
the ADB variable. Since a non-zero value will force the DATAGATE
task to exit, not supplying an ADB variable is usually not meaningful.

Example: EXIT_IF> EXIT_1; ! DATAGATE to exit?

Default: 0

Opcode Definitions

500 046-001 Datagate User's Guide 71

FLOAT_NULL_DATA_VALUE>
Opcode which specifies the value to be written to a FLOAT variable in
the CRISP ADB in the event that a SQL SELECT statement determines that
the field in the relational database table associated with the FLOAT
variable has no data. If placed in the INIT> section, the value will be
valid for all logical transactions in the UCF, otherwise, there should only
be one instance of this opcode per logical transaction. On a logical
transaction basis, this is a One Shot opcode.

Example: FLOAT_NULL_DATA_VALUE> FLOAT_NULL_VAR ;

Default: -999.0

INIT> Optional opcode which designates the start of the initialization section.
All opcodes in this section are automatically "one shot" regardless of the
number of right angle brackets supplied.

Example: INIT> ! Begin initialization section

Default: (No parameters)

LOGICAL_TRANSACTION>
Opcode which specifies the start of a logical transaction. One
DATAGATE process will be started for each LOGICAL_TRANSACTION>
opcode located in the UCF. At least one LOGICAL_TRANSACTION>
opcode must be located.

Example: LOGICAL_TRANSACTION> ! Begin a logical transacation

Default: (No parameters)

NULLS_CHECKING> Opcode used if NULL values are to be written to the relational
database. Tokens of ON and OFF are provided.

When NULLS checking is ON, DATAGATE compares the value found in
Crisp to the null data value for that data type. If the values match, then a
NULL is written to the relational database. (Null data values are defined
using the STRING_NULL_DAT_VALUE>,
NUMERIC_NULL_DATA_VALUE>, FLOAT_NULL_DATA_VALUE>, and
BIT_NULL_DATA_VALUE> opcodes.)

If NULLS checking is OFF, then no comparisons are made and the value
found in Crisp is what is written to the relational database.

Example: NULLS_CHECKING> ; ON

Default: OFF.

Opcode Definitions

72 Datagate User's Guide 500 046-001

NUMERIC_NULL_DATA_VALUE>
Opcode which specifies the value to be written to a NUMERIC or LONG
variable in the CRISP ADB in the event that a SQL SELECT statement
determines that the field in the relational database table associated with
the NUMERIC or LONG variable has no data. If placed in the INIT>
section, the value will be valid for all logical transactions in the UCF,
otherwise, there should only be one instance of this opcode per logical
transaction. On a logical transaction basis, this is a One Shot opcode.

Example: NUMERIC_NULL_DATA_VALUE> ; -99

Default: -999.0

PRIMARY_STATUS_AT>
There may be exactly one instance of this opcode per Logical
Transaction. At the end of each pass, DATAGATE writes the current
process status to the CRISP variable that is named with this opcode.
While this opcode is not required, it is strongly recommended that this
opcode be used. Application logic may then be written to handle error
conditions. A value of 0 signifies that no error condition has been
encountered. PRIMARY_STATUS_AT> may be used in conjunction with
SECONDARY_STATUS_AT> and CLEAR_STATUS_IF> to determine
reasons for errors. For more detailed information, refer to the
appropriate sections of this manual. The following table shows the
values that DATAGATE will write to the primary status variable.

 Status Value Meaning of error

0 No Error Occurred
100 Batch Job Error
125 RDBMS_COMMAND> Error
150 A CRISP _ _ - _> RDBMS Data Type Conversion Error
175 Invalid Date String Located in ZERO_DATE>
200 DATAGATE Exited
225 Version Mismatch Error; DATAGATE Exited
250 Relational Database Not Located
275 A SQL Statement Was Not Executed
300 RDBMS_TYPE> Not Located
325 SQL Statement Parse Error
350 Error in Reading From CRISP
375 RDBMS SQL Error
400 Error in Clearing a Trigger
425 VMS Error
450 WORF Error
475 Error in Writing to CRISP

Example: PRIMARY_STATUS_AT> DATAGATE_STATUS ;

Default: None.

Opcode Definitions

500 046-001 Datagate User's Guide 73

PROCESS> Opcode which signifies the start of the process section. Unless
otherwise specified, by the use of two right angle brackets, all opcodes
following this opcode are done each pass.

Example: PROCESS> ! Begin process section

Default: (No parameters)

RDBMS_IDENT> For Rdb/VMS this opcode specifies the name of the relational database
that DATAGATE is to use. This opcode may NOT specify a CRISP
variable. The value of this opcode must be a full file specification which
can contain only those logicals in the system table. The value must be
enclosed in double quotes. The file extension should be omitted. There
is no default value; this opcode is required.

Example: RDBMS_IDENT> ; "DUA0:[DATABASE]PERSONNEL"

Default: None

RDBMS_TYPE> This opcode specifies the Relational Database Management System
(RDBMS)product (ie, Rdb/VMS, Oracle, Ingres) that the user has on his
system. If used, this opcode may not specify a CRISP variable.
Currently, Rdb/VMS is the only RDBMS implemented.

 Parameter Token
100 RDBVMS
200 ORACLE
300 INGRES

Example: RDBMS_TYPE> ; ORACLE

Default: RDBVMS

ROLLBACK_AND_CLR_IF>
This opcode requires a CRISP variable; any default value will be
ignored. When the value of the variable is non-zero, a SQL
ROLLBACK statement will be issued. If no errors are found, the
variable will be set to zero. In general, it is expected that
this opcode will be useful in handling error conditions.

Example: ROLLBACK_AND_CLR_IF> ERROR_VAR ;

Default: None

Opcode Definitions

74 Datagate User's Guide 500 046-001

ROLLBACK_IF> This opcode requires a CRISP variable; any default value will be
ignored. When the value of the variable is non-zero, a SQL ROLLBACK
statement will be issued. In general, it is expected that this opcode will
be useful in handling error conditions.

Example: ROLLBACK_IF> ERROR_VAR ;

Default: None

ROW_COUNT> This opcode is useful when performing SQL INSERT and SELECT
statements. Its value (either from a variable, or using the default) is
used in conjunction with CRISP arrays. Rather then writing the same
INSERT statement five times in the UCF, where the only difference from
one INSERT statement to the next is the array index (i.e., ARRAY(0),
ARRAY(1), ARRAY(2), ARRAY(3), ARRAY(4)), the user may write the first
element of the array in the INSERT statement (ARRAY[0]), and then
specify a row count value of 5. DATAGATE will then take 5 values
starting with the element specified in the SQL statement and create 5
rows to store in the RDBMS database. With SELECT statements, the user
can again retrieve more than one row at a time, by using the
ROW_COUNT> opcode to tell DATAGATE how many array elements are
available to hold rows returned from the query. Any value for this
opcode will be ignored unless its associated SQL statement is either an
INSERT or a SELECT.

Example: ROW_COUNT> ROW_COUNT_VAR ;

Default: 1

ROW_START> This opcode is used in conjunction with the ROW_COUNT> opcode when
retrieving multiple rows in the same SQL SELECT query. For instance,
suppose there are 100 rows in a table, but you only have room for 5 of
them in the CRISP database. Specify Row Count as 5 (how much room
is in the database) and Row Start as 1 (meaning, return to me 5 rows
starting with row 1). This returns rows 1 to 5 in the table. Now,
change the Row Start to 6 and set the trigger associated with the SQL
statement. DATAGATE will now return 5 rows starting at row 6 (i.e.,
rows 6 to 10). Use this opcode in conjunction with the
DISPLAY_NEXT_ROW_INDEX_AT> opcode to easily "scroll" through all
rows in a table. (Make sure however, that DATAGATE does not issue
a COMMIT or ROLLBACK until all data has been returned.)

Example: ROW_START> ROW_START_VAR ;

Default: 1

Opcode Definitions

500 046-001 Datagate User's Guide 75

SECONDARY_STATUS_AT>
This opcode is used in conjunction with PRIMARY_STATUS_AT>
and CLEAR_STATUS_IF> to aid application logic in determining
DATAGATE errors. A value of 0 means that no error has occurred.
The value that DATAGATE writes to the Secondary Status variable is
dependant on the value of the Primary Status. Refer to the appropriate
sections of this manual for more information.

Example: SECONDARY_STATUS_AT> SECONDARY_STATUS ;

Default: None.

SET_MIN_TRANSACTION_TIME_TO>
Opcode which sets the Minimum Transaction Time on a Logical
Transaction basis. The Mimimun Transaction Time is the minimum
amount of time that a single DATAGATE process must take to perform
its own Logical Transaction. If, after all SQL statement triggers are
read, and any SQL statements executed, the elapsed time is less than this
value, the DATAGATE process will delay for the remaining time. The
Minimum Transaction Time is always specified in centi-second units
(1/100 of a second). A value of 0 will disable this feature. This feature
will aid users in monitoring the CPU usage on the RDBMS VAX. The
supplied default value is 50 (or 1/2 a second).

Example: SET_MIN_TRANSACTION_TIME_TO> ; 3600 ! One minute

Default: 50 (1/2 second)

SET_VAR_TO> Opcode which allows the user to place a predetermined value into an
ADB variable location. Generally used to clear status or edge trigger
controls. Will accept both integer and real values, as well as any of the
Tokens defined for any of the other opcodes. Certain ADB supports
may require specific memory types or locations. Consult the ADB
addendums for legal parameter values. Also consult the Token
Definition Addendum, and any Opcode Definitions allowing for tokens.

Example: SET_VAR_TO> P_COUNT;73 ! PASS_COUNT set to 73

Default: 0

Opcode Definitions

76 Datagate User's Guide 500 046-001

SQL_STATEMENT> Opcode used to actually state what SQL statement is to be executed. The
SQL statement may be found in the default string, or in a CRISP variable.
When possible, put the SQL statement in the default string, because
taking SQL statements from CRISP variables is slower and has a higher
overhead. Only put SQL statements in CRISP variables when the query
must be "adhoc". For known data transfers, use the default string.
Because SQL statements in general are too long to fit on a single line in
the UCF, multiple consecutive SQL_STATEMENT> opcodes are allowed.
DATAGATE will continue parsing the values found for the
SQL_STATEMENT opcodes until a semi-colon (;) terminator is found as
the last character in either a CRISP variable or the default string. This
semi-colon should not be confused with the semi-colon separating the
CRISP variable from the default value in the opcode syntax. Note in the
example that the # precedes the names of the CRISP variables whose
values are to be placed in the SQL statement at execution time.

Example: SQL_STATEMENT> ; "INSERT INTO EMPLOYEES"
SQL_STATEMENT> ; "(LAST_NAME,FIRST_NAME)"
SQL_STATEMENT> ; "VALUES"
SQL_STATEMENT> ; "(#LAST_VAR, #FIRST_VAR);"

Default: None

STRING_NULL_DATA_VALUE>
Opcode which specifies the value to be written to a STRING variable in
the CRISP ADB in the event that a SQL SELECT statement determines that
the field in the relational database table associated with the STRING
variable has no data. If placed in the INIT> section, the value will be
valid for all logical transactions in the UCF, otherwise, there should only
be one instance of this opcode per logical transaction. On a logical
transaction basis, this is a One Shot opcode.

Example: STRING_NULL_DATA_VALUE> ; "Null Data Found"

Default: "" (A zero length string)

SUBMIT_BATCH_AND_CLR_IF>

This opcode requires a CRISP variable; any default value found will be
ignored. When the value of this variable is non-zero, the command
procedure (specified by the BATCH_FILE> opcode) will be submitted to a
batch queue (specified by the BATCH_QUE> opcode) with a log file with
the same name as the batch file with an extension of .LOG.

Example: SUBMIT_BATCH_AND_CLR_IF> END_OF_SHIFT_VARIABLE ;

Default: None

Opcode Definitions

500 046-001 Datagate User's Guide 77

TIMEOUT> Opcode which specifies how long DATAGATE will wait until a default
COMMIT or ROLLBACK will be issued. Normally, users will use the
EXECUTE_COMMIT_IF> or EXECUTE_COMMIT_AND_CLR_IF> opcodes
to execute a SQL statement and then issue a commit. However, users
may also use the EXECUTE_IF> and EXECUTE_AND_CLR_IF> opcodes in
which a case a COMMIT is not automatically issued. Also, if the
execution of a SQL statement fails, a COMMIT will not be issued even if
the EXECUTE_COMMIT_IF> or EXECUTE_COMMIT_AND_CLR_IF>
opcodes were used. Once a SQL statement is executed, the RDBMS puts
locks on tables and rows according to the type of SQL statement. It is
not good relational database practice to leave the database in this
condition for long periods of time. This opcode gives the user the
flexibility to state exactly how long from the start of a SQL statement
DATAGATE will wait before issuing either a COMMIT or a ROLLBACK.
The TIMEOUT value is in units of seconds. The default value is 3600
seconds (30 minutes).

Example: TIMEOUT> ; 300 ! Timeout after 5 minutes

Default: 3600 (30 minutes)

Opcode Definitions

78 Datagate User's Guide 500 046-001

TIMEOUT_ACTION> This opcode gives the user the ability to specify which command
(COMMIT or ROLLBACK) DATAGATE will issue if the timeout
described in TIMEOUT> occurs. The default action is ROLLBACK.

 Parameter Token
100 COMMIT
200 ROLLBACK

Example: TIMEOUT_ACTION> ; COMMIT

Default: ROLLBACK

ZERO_DATE> This opcode is only useful if users will be retrieving RDBMS DATE
values and writing them to CRISP LONG variables or vice versa. An
RDBMS DATE to CRISP LONG conversion involves taking the DATE value
and converting it to the number of seconds since the zero date. A
default date of "01-APR-1970 00: 00: 00.00" has been provided. If a
CRISP variable is used in the ZERO_DATE> opcode, it must be of type
STRING. Also, the data contained in the string must be in the VAX date
format of

"DD-MON-YYYY HH:MM:SS.SS"

If any portion of the VAX date string is missing, then the values from the
default string will be used. For example, if the user wishes the zero
date to be "14-DEC-1970 00:00:00.00", the string need only contain the
value "14-DEC"

Example: ZERO_DATE> ; "01-JAN-1990 12:00:00.00"

Default: "01-APR-1970 00:00:00.00"

Token Definitions

500 046-001 Datagate User's Guide 79

General The keywords (called tokens), which may be used in place of literal
numeric values, are listed here in first alphabetical, and then numerical
order. Refer to the specific opcode for more details. This listing is
meant merely as a summary of the tokens that are legal with the various
opcodes.

☞ NOTE :

The ADD_TO_VAR> and SET_VAR_TO> opcodes may use
any token.

Token Definitions

80 Datagate User's Guide 500 046-001

Token Definitions - Alphabetical List

 Token Value Opcode(s)
 --------------------- --------- ---------------------
 --------------------- --------- ---------------------
 ALTER 100 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 COMMENT 101 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 COMMIT 100 TIMEOUT_ACTION>
 --------------------- --------- ---------------------
 CRISP32 0 ADB_TYPE>
 --------------------- --------- ---------------------
 CREATE 102 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 DELETE 103 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 DROP 104 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 GRANT 105 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 INGRES 300 RDBMS_TYPE>
 --------------------- --------- ---------------------
 INSERT 106 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 RDBVMS 100 RDBMS_TYPE>
 --------------------- --------- ---------------------
 REVOKE 107 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 ROLLBACK 200 TIMEOUT_ACTION>
 --------------------- --------- ---------------------
 SELECT 139 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 UPDATE 109 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------

Token Definitions

500 046-001 Datagate User's Guide 81

Token Definitions - Numerical List

 Token Value Opcode(s)
 --------------------- --------- ---------------------
 --------------------- --------- ---------------------
 CRISP32 0 ADB_TYPE>
 --------------------- --------- ---------------------
 ALTER 100 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 COMMIT 100 TIMEOUT_ACTION>
 --------------------- --------- ---------------------
 RDBVMS 100 RDBMS_TYPE>
 --------------------- --------- ---------------------
 COMMENT 101 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 CREATE 102 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 DELETE 103 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 DROP 104 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 GRANT 105 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 INSERT 106 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 REVOKE 107 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 UPDATE 109 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 SELECT 139 ENABLE_RDBMS_COMMAND>
 DISABLE_RDBMS_COMMAND>
 --------------------- --------- ---------------------
 ROLLBACK 200 TIMEOUT_ACTION>
 --------------------- --------- ---------------------
 INGRES 300 RDBMS_TYPE>
 --------------------- --------- ---------------------

Token Definitions

82 Datagate User's Guide 500 046-001

Notes:

Status and Error Reporting

500 046-001 Datagate User's Guide 83

General Each DATAGATE process maintains two process-wide values: Primary
Status and Secondary Status. These two values are initialized to 0 when
the DATAGATE process starts, and remain 0 unless an erro occurs.
When an error occurs, both values are updated according to the type of
error condition detected and are not updated again until another error
condition occurs, or the user specifically clears them using the
CLEAR_STATUS_IF> opcode.

DATAGATE writes these values to the specified application database if
the PRIMARY_STATUS_AT> and/or SECONDARY_STATUS_AT> opcodes
are included in the UCF. Based on the values that DATAGATE returns
to the CRISP variables, application logic may respond to DATAGATE
errors. Once an error has been handled by the CRISP application, the
DATAGATE status values may be cleared.

In addition to the process-wide status values, DATAGATE will report
SQL erros on a SQL statement basis. Each time a SQL statement is
executed, DATAGATE writes requested values back to a CRISP
database. The user may request the SQLCODE value (via the
DISPLAY_SQLCODE_AT> opcode) and/or the RDBMS specific status (via
the DISPLAY_RDBMS_STATUS_AT> opcode). These values will change
only when a trigger goes from false to true.

Regardless of whether status values are written to the CRISP application
database, DATAGATE signals both informational and error messages.
For DATAGATE batch processes, these messages are located in the
DATAGATE log file. If DATAGATE is running on a CRISP VAX, these
messages are also signalled to the CRISP console.

Primary Status Code The following is a list of implemented Primary Status codes and
their

Definitions definitions.

 Code Definition

100 BATCH_ERROR - An error was found when attempting to submit
a batch job. The Secondary Status value will be
FILE_NOT_FOUND or FILE_TYPE.

112 BOGUS_TRIGGER - An EXECUTE type opcode was found with no
corresponding SQL_STATEMENT opcode. The Secondary Status
value is an index into the UCF.

125 COMMAND_ERROR - An invalid value was found for the
ENABLE_RDBMS_COMMAND> or the
DISABLE_RDBMS_COMMAND> opcodes. The Secondary Status
value is an index into the UCF.

(Continued on next page.)

Status and Error Reporting

84 Datagate User's Guide 500 046-001

Primary Status Code Definitions (cont)

 Code Definition

137 COMMIT_ERROR - An error occured while issuing a COMMIT.
In this case, the Secondary Status is the SQLCODE value.

150 CONVERSION_ERROR - A data type conversion error was
detected when attempting to convert from the RDBMS to CRISP
or vice versa. The Secondary Status value is an index into the
UCF.

175 DATE_ERROR - An invalid date string was detected for the
ZERO_DATE> opcode or an error occurred when an attempt was
made to read/write a DATE column in the relational database.
The Secondary Status value is an index into the UCF.

200 EXIT - This value will be written when the DATAGATE process
exits, but only if the Primay Status value is 0. The Secondary
Status value will also be EXIT, but only if the Secondary Status
value is 0.

225 MISMATCH - The number of CRISP variables did not match the
number of relational database columns in a SQL statement. The
Secondary Status value is an index into the UCF.

250 NO_DATABASE - DATAGATE was unable to locate the specified
relational database. In this case, the Secondary Status is the
SQLCODE value.

275 NO_EXECUTE - Due to errors, a SQL statement was not executed.
The Secondary Status value is an index into the UCF.

300 NO_INIT - DATAGATE attempted RDBMS calls before the
RDBMS_TYPE> opcode was located. Make sure that the
RDBMS_TYPE> opcode is located in the UCF before the
RDBMS_INDENT> opcode and any SQL_STATEMENT> opcodes.
The Secondary Status value is an index into the UCF.

325 PARSE_ERROR - An error was detected when parsing a SQL
statement. The Secondary Status value is an index into the UCF.

350 READ_ERROR - An error was detected when reading CRISP
database trigger or when reading data to be placed in a SQL
statement. Secondary Status values will be NO_DB, NO_NODE,
NO_VARIABLE, or OTHER.

367 ROLLBACK_ERROR - An error occurred while issuing a
ROLLBACK. In this case, the Secondary Status is the SQLCODE
value.

(Continued on next page.)

Status and Error Reporting

500 046-001 Datagate User's Guide 85

Primary Status Code Definitions (cont)

375 SQL_ERROR - The RDBMS returned an error following execution
of a SQL statement. The Secondary Status value is an index into
the UCF.

400 SYMBOL_WRITE_ERROR - An error was detected when clearing a
trigger. The Secondary Status value is an index into the UCF.

412 TRANSACTION_ERROR - Internal error. Contact CRISP
Automation Systems. The Secondary Status will contain a value
to be reported.

425 VMS_ERROR - An unexpected VMS error was detected. In this
case, the Secondary Status value will be the VMS status value
unless the problem is Insufficent Memory in which case the
value will be INSFMEM.

450 WORF_ERROR - An unexpected WORF error was detected. The
Secondary Status value will be the WORF status value.

475 WRITE_ERROR - An error was detected when performing CRISP
database writes. Secondary Status values will be NO_DB,
NO_NODE, NO_VARIABLE, or OTHER.

Secondary Status Code The following is a list of implemented Secondary Status codes
and their

Definitions definitions.

 Code Definition

1000 FILE_NOT_FOUND - The file specified in the BATCH_FILE>
opcode was not located.

1025 FILE_TYPE - The file specified in the BATCH_FILE> opcode was
not of type .COM.

1050 INSFMEM - DATAGATE has insufficient memeory.
DATAGATE will exit.

1075 NO_DB - CRISP database not located.

1100 NO_NODE - CRISP node not located.

1125 NO_VARIABLE - CRISP variable not located.

1150 OTHER - Something besides NO_DB, NO_VARIABLE, and
NO_NODE.

Status and Error Reporting

86 Datagate User's Guide 500 046-001

RDBMS Status Code Status codes in the DATAGATE product are those of the users
Relational

Definitions Database Management System of choice. These codes will be returned
to the ADB through the DISPLAY_SQLCODE_AT> and
DISPLAY_RDBMS_STATUS_AT> opcodes.

The DISPLAY_SQLCODE_AT> opcode cause the RDBMS value of
SQLCODE to be returned. While a SQLCODE value itself is RDBMS
specific, in general, a SQLCODE value of 0 means success; a positive
value is a warning; a negative value is an error. For more detailed
information, refer to the values in the RDBMS documentation.

For Rdb/VMS the DISPLAY_RDBMS_STRING_AT> opcode causes the
value of RDB$MESSAGE_VECTOR to be written to the specified variable.
For more detailed information refer to the Rdb/VMS Guide to Using SQL.

Glossary

500 046-001 Datagate User's Guide 87

General Following are explanations to technical terms, acronyms, and
mnemonics used throughout this document.

ADB Application Database -- a database, for example the CRISP
database

Opcode Operation Code, the function to perform

RDBMS Relational Database Management System. A generic term
for a relational database product.

SQL Structured Query Language

Token Keyword, predefined value

UCF User Configuration (or Control) File

Glossary

88 Datagate User's Guide 500 046-001

Notes:

	Cover
	Title
	Contents
	Introduction
	Operation
	General
	Product Design Philosophy
	CRISP VAX Implementation

	Installing DATAGATE
	General
	Software Installation
	DGT Installation
	WORF Installation

	Configuring DATAGATE
	Configuring on a CRISP VAX
	Configuring on a non-CRISP VAX

	Starting DATAGATE
	Stopping DATAGATE

	Configuring Datagate
	General
	Using DATAGATE
	CRISP Communications Package
	User Configuration File (UCF)

	SQL Statements
	Writing To A Relational Database
	Reading From A Relational Database
	A DATAGATE Logical Transaction

	UCF Design
	The DATAGATE Opcodes
	UCF Summary

	DATAGATE Triggers
	CRISP Variable Syntax
	DATAGATE And SQL Statements
	How To Do A SQL INSERT
	How To Do A SQL UPDATE
	How To Do A SQL DELETE
	How To Do A SQL SELECT
	Retrieving A Single Row
	Retrieving Multiple Rows

	Adhoc SQL
	Retrieving Data From Multiple CRISP Databases

	NULL Data
	Supported Data Types
	DATAGATE DATE Functions
	Using CRISP Arrays
	ROW_COUNT> And The SQL INSERT Statement
	ROW_COUNT>, ROW_START> And The SQL SELECT Statement
	Combining Arrays And Single Values

	Using DATAGATE To Submit Batch Jobs
	Inproving CPU Usage
	A Sample UCF for Rdb/VMS

	Opcode Definitions
	General
	ADB_IDENT>
	ADB_NODE>
	ADB_TYPE>
	ADD_TO_VAR>
	BIT_NULL_DATA_VALUE>
	BATCH_FILE>
	BATCH_QUE>
	BATCH_PARAMETER_P1>
	BATCH_PARAMETER_P2>
	BATCH_PARAMETER_P3>
	BATCH_PARAMETER_P4>
	BATCH_PARAMETER_P5>
	BATCH_PARAMETER_P6>
	BATCH_PARAMETER_P7>
	BATCH_PARAMETER_P8>
	CLEAR_STATUS_IF>
	COMMIT_AND_CLR_IF>
	COMMIT_IF>
	CUSTOMER_CONFIG_CODE>
	CUSTOMER_CONFIG_ID>
	CUSTOMER_LOCATION>
	CUSTOMER_NAME>
	CUSTOMER_SW_LICENSE>
	CUSTOMER_USE_LIMIT>
	DEFINE>
	DISABLE_RDBMS_COMMAND>
	DISPLAY_END_OF_DATA_AT>
	DISPLAY_MORE_DATA_AT>
	DISPLAY_NEXT_ROW_INDEX_AT>
	DISPLAY_RDBMS_STATUS_AT>
	DISPLAY_SQLCODE_AT>
	DISPLAY_SQL_DONE_AT>
	DISPLAY_TOTAL_ROWS_AT>
	ENABLE_RDBMS_COMMAND>
	END>
	EXECUTE_AND_CLR_IF>
	EXECUTE_COMMIT_AND_CLR_IF>
	EXECUTE_COMMIT_IF>
	EXECUTE_IF>
	EXIT_IF>
	FLOAT_NULL_DATA_VALUE>
	INIT>
	LOGICAL_TRANSACTION>
	NULLS_CHECKING>
	NUMERIC_NULL_DATA_VALUE>
	PRIMARY_STATUS_AT>
	PROCESS>
	RDBMS_IDENT>
	RDBMS_TYPE>
	ROLLBACK_AND_CLR_IF>
	ROLLBACK_IF>
	ROW_COUNT>
	ROW_START>
	SECONDARY_STATUS_AT>
	SET_MIN_TRANSACTION_TIME_TO>
	SET_VAR_TO>
	SQL_STATEMENT>
	STRING_NULL_DATA_VALUE>
	SUBMIT_BATCH_AND_CLR_IF>
	TIMEOUT>
	TIMEOUT_ACTION>
	ZERO_DATE>

	Token Definitions
	General
	Token Definitions - Alphabetical List
	Token Definitions - Numerical List

	Status and Error Reporting
	General
	Primary Status Code Definitions
	Secondary Status Code Definitions
	RDBMS Status Code Definitions

	Glossary

