CRISP®
Datagate
User's

Guide

SAQUARE D COMPANY
CRISP AUTOMATION SYSTEMS

CRISP®
Datagate User's Guide

Copyright© 1990 by

Square D Company

5160 Paul G. Blazer Memorial Parkway
Dublin, Ohio 43017

USA

All rights reserved including the right of reproduction
in whole or in part in any form.

CRISP® is a registered trademark of Square D Company

I/ONYX® is a registered trademark of Square D Company

D Dedicated to Growth
Committed to Quality

CRISP®

Datagate User's Guide

Copyright© 1990 by

Square D Company

5160 Paul G. Blazer Memorial Parkway
Dublin, Ohio 43017

USA

(614) 764-4200

D

Dedicated to Growth
Committed to Quality

Datagate
User's
Guide

SQUARE D COMPANY
CRISP AUTOMATION SYSTEMS

Datagate
User's Guide
Document number: 500 046 - 001, Rev.

Document History

Revision Date Pages affected/Description of change

a 8/9/90
b 8/16/90
c 9/25/90
d 12/6/90

Software Version CRISP/32 Rev. 2.7 and later

This information furnished by Square D Company is believed to be
accurate and reliable. However, Square D Company neither assumes
responsibility for its use nor for any infringements of patents or other
rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights
of Square D Company. This information is subject to change without
notice.

Copyright 1990 by

Square D Company

5160 Paul G. Blazer Memorial Parkway
Dublin, Ohio 43017

USA

WARNING: Any unauthorized sale, modification or duplication of this
material may be an infringement of copyright.

CRISP® is a registered trademark of Square D Company.
I/ONYX® is a registered trademark of Square D Company.

The following are trademarks of Digital Equipment Corporation: VMS, DEC,
RSX-IIM Plus, VAX, MicroVAX, and PDP-II.

Table of Contents

Introduction
g0 o (1 To 110 o FE TSR 1
Operation
General.................. SO 3
Product Design PhilOSOPNY ... 4
CRISP VAX IMPIEMENTALION.........cccceiieeecceeeeee e 4

Installing Datagate

ConfigurnNg DAatagate.............c..cceirririeiirrise e
Configuring on a CRISP VAX...........c.......
Configuring on a non-CRISP VAX
Starting Datagate............covviiiiiiiiii
StOPPING DAtQGALE.......ccccoiieieiieeee e

Configuring Datagate

GENEIAL....c et bbb e e
USING DAatAQALE.........ccoe et sttt ae e aena e e e eneas
CRISP Communications Package
User Configuration File (UCKE)..........coiiieeerereres e
SQL SEAEIMENLS.......ceiiiiiieiiee et ettt b et a et e e e sbeeeeeneas
Wiriting To A Relational Database...............cccecncncccc e,
Reading From A Relational Database.............ccocceivverineicniseseecsnesese s 15
A Datagate Logical TranNSACHON............ccccvvrereeieierisessieeee s sesens 16
8 [9 7T | PSSR 16
The Datagate OPCOAES...........ccviuriririiirirresisiie et 18
UCE SUMIMIEY ...ttt 20
DAtagAte THOGEIS.ccueiuerierierieieeeerese e steseeseses e ssessestessesseseesessessessessessessessesesesnens 21
CRISP Variable SYNtaX.........ccooiiieece e e 23

[500 046-001 Datagate User's Guide | i |

Table of Contents

Configuring Datagate (cont)

Datagate ANd SQL StAtEMENTS.........c.covirieiiiiieeserse et 24
HOW TO DO A SQL INSERT.......ciiiiiiiiriesirese e 25
HOW TO DO A SQL UPDALTE..........ooiieeieire et 26
HOW TO DO A SQL DELETE.......cctieiieieieieeeee e 27
HOW TO DO A SQL SELECT......cciieeiieriesiesiee e e 28
Retrieving A SINGIE ROW...........cccciiii s 28
Retrieving MUIIPIE ROWS.........ccoiicee et 30
AANOC SQL.....oiie ettt r e 33
Retrieving Data From Multiple CRISP Datab@ases...........cccvvvererenenereeeseeneseseennes 34

NULL DATAL....cveeeeiieciie ettt sttt ettt se et ne e e nn e e snne e e neeennns

Supported Data TYPES...........cooii s

Datagate DATE FUNCHONS..........cccciii s

USING CRISP AITQYS.......ccueiieiieiieiie e see e sre e
ROW_COUNT> And The SQL INSERT Statement
ROW _COUNT>, ROW_START> And The SQL SELECT Statement...........c.coc.vveren. 39
Combining Arrays ANd SINGIE VAIUES.............ccceeerrereenerreeieiessesse s sessessesseens 41

Using Datagate To Submit BatCh JODS.............ccccciiiiiiiccceeeesesesesese e 41

IMProvINg CPU USAQE.........coiieririiieesiesie ettt se e sbe s ssennas 42

A Sample UCF for RdeMS .. 43

Opcode Definitions

(CT=T ol = | SRS USROS 49
ADB _IDENT>.....co ittt s b e e b e s b e et et e nne e e ne e ra e nes 49
ADB NODES.........oooiiiiiiit et b e be e sbe e st e e be e sreesaneereennes 49
D = T 1 SR 49
ADD TO VARS.......c.oe ettt ettt s e ee st te e te st e s s e s e st e e te e nbeesaeesseesneeenseeseenaeenneennns 50
BIT_ NULL DATA VALUES........c.ooe ettt te st s st s sse e ae e s eenneesnaeennneans 50
BATCH FILE>..... ..ottt ettt e e nae e e st e e e nsae e snbe e e nsaeeenneeennes 50
BATCH QUES..........oiiiii ittt s s be e s be e baeebeessreenseeans 50
BATCH_PARAMETER PI>......coiiiiiie ettt st 51
BATCH PARAMETER P2>........e ettt e e 51
BATCH PARAMETER P3>......co ettt st 51
BATCH PARAMETER PA>.........e ettt st 51
BATCH PARAMETER P5>......coii sttt s s 52
BATCH PARAMETER PB>.........eoieeee ettt e e 52
BATCH PARAMETER P73ooiiiiieeeceeteiee ettt sttt sttt e asae e sae st sneneenes 52
BATCH PARAMETER P8>.......cocoiiteiitiietecieiesiets st tese s e ste s tesassssassssaessssensssenssnns 52
CLEAR STATUS IF>.... ittt sttt sttt st sts st ettt sttt s st sessesnesnesreans 53
COMMIT _AND CLR P>ttt teass s eaen st se s an e et e s seaes 53
COMMIT IF>...ce ettt e et e e et e s bt e e e eae e e sneeeenbeeesnseesenteeeanneas 53
CUSTOMER _CONFIG CODE>.........ooooeeetcteieeete ettt s 53
CUSTOMER_CONFIG ID>......coiiiiieciiniriesienie sttt nnas 53
CUSTOMER _LOCATION..... ..ottt st n e e ae e s e e e e ne e 54
CUSTOMER NAMES ...ttt ettt rte et s e ste st e e e s te e s e e e aeesseesnseeneesnneennen 54
iv | Datagate User's Guide 500 046-001]

Table of Contents

Opcode Definitions (cont)

CUSTOMER_SW._LICENSES......cvveeoeeeeeeeeeseseeeessessessesssessesesssesseseessssssssessssssesessssesseeens
CUSTOMER USE._ LIMITS.....ooooooe oo eeeeeeeseseeeeeseseeseoesseseseesessesseseseeseeossssesseeessseeeeen
DISABLE_RDBMS COMMANDS........cooooocoeseseseeeeseeeeeeeeeesseeseseeseessssssesessssessseeeesseseeenen
DISPLAY END _OF DATA AT> . rooooooooeesssssoossssmssssssssssssssssssmsssssssssesssssssessssssseeesesssonnn
DISPLAY MORE DATA AT ooovovocosssssoossssseessssssossssssssssssssssssssssssssssesssssissssssseessesons
DISPLAY_NEXT ROW _INDEX AT> .. oooooooooeoeeeeoooooooeeeeeeoooesssseseessssssssssseesssssressseessenen
DISPLAY RDBIVIS STATUS ATS.....oovveeeeeseooseeesseoossseeseeeeeseesessssessssssssssssssssssssssssesesson
DISPLAY SQLCODE. AT ...cooeeeoveeeeeersoeseeeeseeeeseseseseseesessssssssssssesesssssssesssseesssseseesseeee
DISPLAY SQL DONE _ATS......oooooooeseeeeeeoeoeeeeeeesseoeessssesesssesessssseesssseesssssssssseeessssseesseren
DISPLAY TOTAL ROWS AT ...vvcooooosooveesssssssesesssssssssssssessssesssmssssessssssssssesssossssoeeesen
ENABLE RDBMS_ COMMANDScoooooeeeoooooesessssssssssssesssssssseeessssssessemeeseesssesmeeeoen

EXECUTE_AND CILR IF>.......oiieiieieieens
EXECUTE_COMMIT_AND_CLR_IF>
EXECUTE_COMMIT_IF>....o. ettt senes
EXECUTE P>ttt ettt s e s e s st sennnens

NULLS CHECKINGS..........oovoocommmmmenssmmssssssesssssssmmmsessssesossseeeessessssssmsessssssssssssssssssssnn
NUMERIC_NULL DATA VALUES...
PRIMARY STATUS AT eoooemooeooooooosoooooeeseeesssseessssssessmm s oeessssmmsssssoesssssseensssooree
PROGCESSS......coooommoeseeeeriosssoeesssose e soseessesee oo seeessese oo sees s oeeeseeee oo oeeeseee oo
RDBMS _IDENTS - oooooooooooeesoeooeesseessseeseeessseesssseeeesssesssssseesseessseseeesseesseesr oo seesseene
RDBIMS TYPES ... oooveconsssseesssssssseesssssssssssssssssnsomesssssssssssssnmsssssssssssssssesssossosenn
ROLLBATK AND _CLR IF>oere oo oooeeeessemmmmessresssesssssssssssssesseeessesessssssssssssssssseennnsre
ROLLBACK IF> oo
ROW _COUNT>..........
RO STARTS..oooo oo osoessssssssssssssmmm e eeessee oo esessenessseessssseemooomms oo
SECONDARY STATUS AT .ooooommomoiiiiosssssssssssssssssssssmmmmmerssessssssssssssssssssssssssssesmmmemeren
SET_MIN_TRANSACTION _TIME_ TOS...vvoooooommmmnseemmmeesssssssseeeeeeessssssssmmmmmereesseeeeseesson 65
SET VAR TO.....ooseeomeeeoseeseoimseemeeesesseessssssssssssssssssssesssseessssemeeessseessssssssnssssssssnin 65
SQL STATEMENT ... 66
STRING NULL DATA VALUES. 66
SUBMIT BATCH_AND _CLR [P 66
TIMEOUTS.......omseoooesoemeemeeeomeeeseemeeeseeessssssssssessssssssessssssseeeeeessssssssssssessssessnsssssssio 67
TIMEOUT ACTIONS oeooooooooooseeesssssssssssesssssmmsssssseeesesssessssessssesssssssssssssssssssssmsnneeeeeseon 63
ZERO. DATES.c.eeeeoooooooiooesooeessessseeseessseessssssssssssssseesssssssssssmossmesssssmmmssssssssssssssors oo 63

[500 046-001

Datagate User's Guide [

Table of Contents

Token Definitions

General.........coovneiiinnce, S e 69
Token Definitions - AIphabetiCal LiSt...........cocovrerresssesee s 70
Token DefinitioNs - NUMEMCA LISt.........c.coeiiririieere s 71

State and Error Reporting

General............ccovucurveenee, O 73

Primary Status Code DEefiNItioNS..............ccocoriicinininicn i 73

Secondary Status Code DEfINILIONS...........ccovreerrrireierersee e 75

RDBMS Status Code DefiNItIONS..........ccoireririerereiesese s 76
Glossary

LT [T = | R 77

vi | Datagate User's Guide 500 046-001]

Introduction

Introduction The DATAGATE User's Guide provides the information necessary for
you to operate the DATAGATE software.

This manual contains the following sections.

Section Description

Operation This section of the manual contains
general information concerning the
basic operation of the DATAGATE
software (e.g., Product Design
Philosophy, VAX implementation, etc.).

(page 3)

Installing DATAGATE This section of the manual contains
information concerning the software
installation, configuration,
starting/stopping DATAGATE, etc.

(page 5)

Configuring DATAGATE | Thissection of the manual contains
detailed information concerning the
configuration of the DATAGATE

software.
(page 11)

Opcode Definitions This section of the manual contains
detailed information concerning the
valid DATAGATE opcodes.

(page 49)

Token Definitions This section of the manual contains
detailed information concerning
keywords that may be used in place of
literal numeric values.

(page 69)

Status and Error Reporting| This section of the manual contains
detailed information concerning the
codes that will be returned to the
application database.

(page 73)

Glossary This section of the manual contains
information concerning terms,
abbreviations, etc. used in this manual.

(page 77)

[500 046-001 Datagate User's Guide | 1]

Introduction

Notes:

2 | Datagate User's Guide 500 046-001]

Operation

General The DATAGATE User's Guide provides the information concerning the
operation of the DATAGATE software.
This section contains the following subsections.
Section Description

Product Design Philosophy This section of the manual contains
general information concerning the
basic operation of the DATAGATE
software (e.g., Product Design
Philosophy, VAX implementation, etc.).

(page4)

CRISP VAX Implementation This section of the manual contains
information concerning the
implementation of DATAGATE inthe
CRISP/VAX environment.

(page4)
[500 046-001

Datagate User's Guide | 3]

Operation

Product Design Philosophy DATAGATE isasoftware product that is designed to handle

CRISP VAX
Implementation

the transfer of data between any Relational Database Management
System supporting a Dynamic SQL interface and any host computer
database. RDBMS users are provided with both a programmatic means
to transfer data (used in conjunction with the embedded sQL capabilities
of theRDBMS product) and a means to setup configured data transfers.
Theintent of a configured transfer isto allow users to specify SQL
statements which contain the names of application database variables,
whose values are to take the place of valuesin the SQL statement.
DATAGATE isdesigned to allow totaly flexible bi-directional data
transfers.

SQUARE D/CRISP Automation is continually improving this product. If
you do not see arelational database construct that you need, please
contact us. One of our DATAGATE experts would be happy to address
your needs specificaly.

The specific DATAGATE implementation described in this manual is

used to transfer data between any number of Relational Database
Management Systems (RDBMS)and CRISP VAX databases. For
configured transfers, the user ssimply places a description of the desired
configuration in adisk file usng DATAGATE configuration commands
in combination with ANSI Standard Query Language (SQL) statements
with aspecial syntax to denote CRISP Application Database (ADB)
variables. DATAGATE will then automatically perform the data
transfers between the tables specified and the CRISP databases.

The parts of the user configuration file are described in the Configuring
DATAGATE section. They include a description of the commands,
command defaults, and the relationship between relational database
tables and the CRISP databases.

For programmatic transfers, users will write their own Fortran or "C"
program containing both embedded sQL statements (for Rdb access) and
calsto aDATAGATE Run-Time Library (RTL) Communications
package which allows easy transfer of data into and out of CRISP
databases on any node.

4]

Datagate User's Guide 500 046-001]

Installing DATAGATE

General The DATAGATE User's Guide provides the information concerning the
installation of the DATAGATE software.
This section contains the following subsections.
Section Description

Software Installation This section of the manual contains
general information concerning the
installation of the DATAGATE
software.

(page 6)

Configuring DATAGATE | Thissection of the manua defines the
configuration choices available
depending on whether or not
DATAGATE isinstaled on asystem
with CRISP/32.

(page 8)
[500 046-001 Datagate User's Guide

Installing Datagate

Software Installation Thissoftwareisinstalled on your VAX/VMS system using Digital

DGT Installation

Equipment Corporations standard VMSINSTAL.COM. Refer to the
installation guide provided with DATAGATE for more detailed
installation information. Please read this entire section before
proceeding with the installation.

For performance reasons, it is preferrable if the RDBMS of the user's
choiceisinstalled on anon-CRISPVAX. Then, DATAGATE isinstalled
on the same VAX as theRDBMS. However, DATAGATE may be
installed on aCRISP VAX aslong as theRDBMS isalso installed on that
VAX.

In order for DATAGATE to function, WORF and DATAGATE must be
instaled. The order in which the two products areinstalled is not
important; however, both products must be on the DATAGATE VAX
before attempting to start DATAGATE.

Most of the DATAGATE filesareingtaled in the directory
[TAG.DGT] on the specified disk; however, the DATAGATE
run-time libraries are installed in SY S$SHARE and a startup
procedureis placed in SY SBSSTARTUP on the system disk.

Thefollowing files are installed.

user $di sk: [TAG DGT] DGT. EXE
DGT_BUI LD_| NGRES_C_EXAMPLE. COM
DGT_BU LD _RDBVMS_C_EXAMPLE. COM
DGT_C _EXAMPLE. TEMPLATE
DGT_RDBVMS. UCF
DGT_SAMPLE. UCF
DGT_USERMAN. VEM
DGTTST. C32
USER_CONFI G _DGT. COM
UCP$TRD. EXE
UCP$TI K. EXE
UCP$UCP. EXE

SYS$SHARE CRI SPDGTRDBVMSRTL. EXE
CRI SPDGT1 NGRESRTL. EXE

SYS$STARTUP DGT_STARTUP. COM
CRI SP$ USER_CONFI G_DGT. COwr

In addition to the previousfiles, VM S help shall be available by
typing the following.

$ HELP DGT

6|

Datagate User's Guide 500 046-001]

Installing Datagate

(Continued on next page.)

[500 046-001

Datagate User's Guide

Installing Datagate

+ Note:

The sample user configuration files (UCFs) provide
with this product are intended as areference only.
Do not give your production UCF the same name as
any of the example UCFs or they will be
overwritten by subsequent DATAGATE upgrades.
Also, the location of USER_CONFIG_DGT.COM is
dependent on whether DATAGATE isinstalled on
aCRISP Or anon-CRISP VAX.

Once DATAGATE has been ingtalled using VMSINSTAL, execute
the following.

$ @BYS$STARTUP: DGT_STARTUP ddcO: rdbrs_1 [rdbns_2]

Whereddc0: should be replaced by the device that DATAGATE
was installed on and wherer dbns_1 and, optionally, r dbns_2
should be replaced by one of the tokens RDBMVS or INGRES
depending on the relational database that you will use. Y ou will
only need to replacer dbns_2 isyou have both Rdb/vms and
Ingres on your system.

This procedure creates the TAG_DGT$DEVICE logical and install
the DATAGATE run-timelibraries. If thisinstallationis
performed on a cluster, you must execute the previousline on al
other nodesin the cluster.

In addition, you will need to add the previous line to the system
startup file (SY SSSTARTUP:SY STARTUP_V5.COM).

WOREF Installation

The WORF filesare al installed on the system disk. They are
installed as follows.

SYS$LI BRARY: CRI SPRTL. EXE
CRI SPWORFRTL. EXE
CRI SPUSERLI B. TLB
SYS$STARTUP: WORF_STARTUP. COM

SYS$EXAMPLES: WORF_EXAWPLE_C. C
WORF_EXAMPLE_FOR. FOR

SYS$HELP: WORF* . RELEASE_NOTES

(Continued on next page.)

8 | Datagate User's Guide 500 046-001]

Installing Datagate

WORF Installation (cont)

When the WORF ingtallation is complete, you must execute the
following line and add it to the system startup procedure
(SYS$SMANAGER:SY STARTUP_V5.COM).

$ @YS$STARTUP: WORF_STARTUP ddcO: [ddcO:]

Whereddc0: should be replaced by the device name(s) of the
network devices (e.g., XQA0:) that WORF isto use for
communicationns. The startup procedure defines system logical
names for CRISP$NET00 and CRISP$NETOL1 to refer to the
device(s)

If thisinstallation is performed on a cluster, execute the previous
line on dl other nodesin the cluster.

Configuring DATAGATE Once DATAGATE isingtalled, it must be configured. The

configuration choices available are dependant on whether DATAGATE
isinstalled on aCRISP or a non-CRISP VAX.

Configuring on a CRISP VAX

If DATAGATE isingtalled on aCRISP VAX, execute the
following command procedure.

$ @ CRI SP] USER_CONFI G_DGT

This command procedure initially prompts you for the name of
the disk where the product has been installed, if it was unable to
determine this information automatically. Thiswould normally
be the disk that holds you RDBMS or possibly your system disk.
Y ou are also prompted to supply the name of your user
configuration file (UCF), which isthe file that describes your
specific requirements. Y ou must enter the full file specification,
including node, device, and directory.

Y ou are then prompted whether you want DATAGATE to run
DETACHED or on aBATCH queue. Thisis dependant on you
specific system requirements.

If you specify that DATAGATE should runin BATCH mode,
you are then prompted for the name of the batch queue and you
are prompted to verify that the job limit qualifier for the queueis
large enough to run DATAGATE in addition to other system
batch jobs.

(Continued on next page.)

[500 046-001

Datagate User's Guide | 9]

Installing Datagate

Configuring on a CRISP VAX (cont)

Regardless of whether you chooseto run DATAGATE as
DETACHED process or on a batch queue, you are prompted for
the priority for each DATAGATE process. The recommended
valueis4.

The results of the configuration process are written to
[CRISPJUSER_START_DGT.COM. DATAGATE will gtart
automatically when CRISP is started.

Configuring on a non-CRISP VAX

If DATAGATE isinstalled on anon-CRISP VAX, execute the
following command procedure.

$ @ TAG DGT] USER_CONFI G_DGT

This command procedure initially prompts you for the name of
the disk where the product has been installed, if it was unable to
determine this information automatically. Y ou are aso prompted
to supply the name of your user configuration file (UCF), which
isthefile that describes your specific requirements. Y ou must
enter the full file specification, including node, device, and
directory.

Y ou are then prompted for the name of the batch queue that
DATAGATE istorunon. Enter the name of abatch queue on
your system. Y ou are prompted to verify that the job limit
qualifier for the queue islarge enough to run DATAGATE in
addition to your other system requirements.

Finally, you are prompted for the priority at which DATAGATE
should run. The recommended valueis4.

The results of the configuration process are written to
[TAG.DDGT]USER_START_DGT.COM.

[10| Datagate User's Guide 500 046-001]

Installing Datagate

Starting DATAGATE

To start DATAGATE on aCRISP system, execute the following
command procedure.

$ @ CRI SP] USER_START_DGT

DATAGATE will start automatically when CRISP is started. Use the
following command to start CRISP and DATAGATE.

$ CRSTART

To start DATAGATE on anon-CRISP system, execute the following
command procedure.

$ @ TAG DGT] USER_START_DGT

This command line may also be inserted in your SYSTARTUP_V5.COM
file sothat DATAGATE will start automatically on system boot.

If you have chosen to run DATAGATE on abatch queue, alog fileis
created in [TAG.DGT]SUBMIT_DGT_nn.LOG, where DGT_nnisthe name of
the associated DATAGATE process.

Stopping DATAGATE Tostop al DATAGATE processes, execute the following

command.
$ DGTK/ PRODUCT=DGT
The previous line should be added to the system shutdown procedure

SY SSMANAGER:SY SHUTDWN.COM prior to any lines that shut down
relational database monitors.

[500 046-001

Datagate User's Guide | 11}

Configuring Datagate

General The DATAGATE User's Guide provides the information concerning the
configuration of the DATAGATE software.
This section contains the following subsections.
Section Description

Using DATAGATE This section of the manual contains
information concerning the uses of
DATAGATE.

(page 13)

SQL Statements This section of the manual contains
information concerning DATAGATE
uses of SQL, including writing to and
reading from arelational database.

(page 14)

UCF Design This section of the manual contains
information concerning the contents of
the User Configuration File (UCF).

(page 16)

DATAGATE Triggers This section of the manual defines the

use of triggerswith DATAGATE.
(page 21)

CRISP Variable Syntax | Thissection of the manua defines the
use of CRISP variableswith
DATAGATE.

(page 23)

DATAGATE and SQL Stat¢gments This section of the manual
defines how DATAGATE locates and
uses SQL statements.

(page 24)

NULL Data This section of the manual defines how
DATAGATE handles null datain
relational databases.

(page 35)

Supported Data Types This section of the manual defines the
CRISP and RDBMS data types that will
be supported by DATAGATE.

(page 36)
(Continued on next page.)
[500 046-001 Datagate User's Guide | 12

Configuring Datagate

Section

Description

DATAGATE DATE Functio

(page 37)

NS This section of the manual defines
how DATAGATE timestamps records
that are written to the relational
database.

Using CRISP Arrays

(page 38)

This section of the manual defines how
DATAGATE uses CRISP arrays.

Using DATAGATE to Subnjit This section of the manual defines

Batch Jobs

(page 41)

how
DATAGATE can be used to submit
command procedures to a batch queue.

Improving CPU Usage

(page 42)

This section of the manua defines how
to improve CPU usage.

A Sample UCF for Rdb/VM

S This section of the manua contains a
sampleUCF for Rdb/vMs.

(page 43)

[500 046-001

Datagate User's Guide

[13|

Configuring Datagate

Using DATAGATE

DATAGATE provides users with a flexible means to transfer data both
into and out of a Relational Database Management System (RDBMS).
Data transfer may be accomplished between the relational database and
the CRISP Application Database (ADB) in two manners.

First, users may write programs in languages such as"C" or Fortran,
embedding SQL statementsin the code, and then reading or writing
CRISP variables by making calls to acommunications library provided
with DATAGATE. These programs are then under user control as
opposed to CRISP control; they can be executed (via mechanisms
provided with some RDBMS screen packages) when data changes or
when some other RDBMS event occurs.

Second, users may preconfigure transfers by creating afile that contains
acombination of DATAGATE commands and the ANSI standard
Structured Query Language (SQL). Instead of placing valuesinto the
SQL statements, users will place the names of CRISP variables whose
values will be substituted in the SQL statement when the statement is
executed. Actua execution of asqQL statement will be determined by
"triggers" from CRISP application database variables. The application
database may be under the control of a CRISP logic if the user so
desires.

CRISP Communications Package

DATAGATE provides arun-time library containing routines that
make it simple for users to read and write CRISP variable data.
Using routines in the library, users will be able to create lists
(Data Source Lists (DSL)) of CRISP variables. Variablesina
single list may reside on any CRISP node in the system. Once a
DSL is created, a separate call is made to either read thelist or
write thelist.

Examples of programs which contain embedded sQL and make
callsto the WORF communications RTL are located in the
[TAG.DGT] directory. Thefilesthat will build an Rdb/VMs demo
using avVAX C compiler are asfollows.

e DGT_BUILD_RDBVMS_C_EXAMPLE.COM
e DGT_C EXAMPLETEMPLATE
e DGTTST.C32

Building the demo requires the following two steps.

1 If you plan to actually execute the demo, copy DGTTST.C32
to aCRISPVAX. Then, use LGBUILD to build it and
LGCONFIGto install it. You will need to stop and restart
CRISP.

[14 |

Datagate User's Guide 500 046-001]

Configuring Datagate

(Continued on next page.)

[500 046-001 Datagate User's Guide | 15|

Configuring Datagate

CRISP Communications Package (cont)

2 Executethe DGT_BUILD_RDBVMS C_EXAMPLE.COM
procedure. This procedure builds atest Rdb/vMs database
and prompts you for the name of the CRISP node where you
installed the DBTTST database. When this procedure finishes
executing, aDGT_RDBVMS C_EXAMPLE.EXE will be created.

Oncethe DGT_FRBVMS _C_EXAMPLE.EXE fileiscreated, it may
berun. ThefileDGT_RDBVMS C EXAMPLE.SC istheSQL
module containing EXEC SQL statements. Thefile
DGT_RDBVMS_C _EXAMPLE.C contains the C code generated.

Similar procedures are available in [TAG.DGT] to build an Ingres
demo.

User Configuration File (UCF)

When the exact relational tablesinvolved in the data transfer are
known, users may place the sQL statements describing the
transfer in auCF (User Configuration File). To allow for adhoc
data transfer, users many also specify a CRISP STRING variable
which will contain the SQL statement to be executed.

The user generated User Configuration File (UCF) will contain
control parameters referred to as opcodes. These opcodes are
converted into an optimized internal format at start time. The
opcodes are used by the various processes that make up
DATAGATE to control the number of logical transactions and to
determine when SQL statements are to be executed. The
DATAGATE UCFisan ASCII text file that is easily created
with any text file editor. A samplefile may be found in the
[TAG.DGT] directory in the file DGT_SAMPLE.UCF.

SQL Statements DATAGATE uses ANSI Standard SQL as its base language for
communicating to an RDBMS. Depending on the RDBMS, some non-
ANSI SQL featuresmay also be available. All Data Manipulation
Language (DML) statements are allowed (DELETE, INSERT, SELECT, and
UPDATE) aswell asall Data Definition Language (DDL) statements
(ALTER, COMMENT, CREATE, and DROP). In addition, the Data
Control Language (DCL) statements (GRANT and REVOKE). The
COMMIT and ROLLBACK statements are also under user control.

[16| Datagate User's Guide 500 046-001]

Configuring Datagate

SQL Statements (cont)
Writing To A Relational Database

In the relational database environment, there are 3 types of
statements which add or change data in adatabase: INSERT,
UPDATE and DELETE. The INSERT statement is used when the
user wants to create anew row in atable. Effectively, thisisan
ADD function. UPDATE isused to MODIFY one or more rows in
asinglerelational database table, while DELETE is used to delete
one or more rows in asingle database table.

However, any datain the relational database is not actually
changed until acoMMIT isissued. The COMMIT statement
means that the changes should be made permanent. A user may
also issue aROLLBACK statement which means that the changes
should not be made (i.e., the database should be put back the
way it was before).

Reading From A Relational Database

In the relational database environment, the SELECT statement is
used to "locate” and "read" data from the relational database. A
singlerow SELECT isfairly straight forward. Aslong asthe user is
familiar enough with the relational database to know that asingle
row isto be retrieved, the statement can be easily executed and the
data moved into the corresponding CRISP database variables.

When asQL SELECT statement retrieves more data than the
CRISP application database has been configured for, the CRISP
application can be designed to handle the datain severa ways.
Users may, for example, wish to use the CRISP database to
"scroll" through rowsin arelationa database table, or
combination of tables. By using a combination of the
DATAGATE ROW_COUNT> function and the DATAGATE
ROW_START> opcode, the user will be able to issue sQL
statements that get "the first 5 rows", then the "next 5 rows",
etc, until al datain the query has been transferred through the
CRISP database. The order that the datais returned to the CRISP
database is determined by the ORDER BY clause in the SQL
statement itself. Any SQL SELECT statement is allowed,
including multi-table JOINS.

Another consideration when reading data from arelationa
database is when to issue the ROLLBACK or COMMIT statements.
Dueto the transaction capabilities of all Relational Database
Management Systems, once aread query has been started, the
datareturned by the RDBMS is guaranteed not to change until a
ROLLBACK or COMMIT isissued; at that time, any data that was
written by "other sources' will be made availableif the query is
re-executed. When reading datafrom the relational database, the
affect of aCOMMIT or ROLLBACK isto finish the query.

[500 046-001 Datagate User's Guide | 17 |

Configuring Datagate

[18]

Datagate User's Guide

500 046-001]

Configuring Datagate

SQL Statements (cont)

A DATAGATE Logical Transaction

In RDBMS terms, atransaction consists of all statements that take
place between the first of many DML statements and the
execution of either aCOMMIT or aROLLBACK. When a user
starts a transaction, hisview of the database islogically frozen;
any data he adds, modifies, or deletesis only changed in his
view; any data he readsis only read from his view.

Transactions may be read (where the SELECT isthe only
statement issued), or write (where any statement except the
SELECT isissued), or read/write. The affect of aCOMMIT on a
write transaction is that any changes made during the transaction
are made permanent; they will be seen by other users. The affect
of aROLLBACK on awrite transaction is that the database reverts
back to the way it was prior to the start of the transactions; all
changes are discarded. The affect of a COMMIT or ROLLBACK
on aread transaction isthe same: any changes made by other
users during the course of the transactions are now available,
and will be seen if the SELECT is re-executed.

This discussion shows that the question of when to issue a
COMMIT or ROLLBACK isimportant, especially when aUCF has
SQL INSERT statements followed by SQL SELECT statements.
DATAGATE may bein the process of returning a multiple row
select by groups of rows when aCoOMMIT from an INSERT
statement needsto beissued. If DATAGATE were to go ahead
and issue theCOMMIT, it is possible that the datain the SELECT
statement would be changed, since new data could potentially be
present.

To handle this situation, DATAGATE provides a concept known
asaLOGICAL TRANSACTION. By grouping SQL statements
together, the user will have the capability to determine which
statements will be affected when a COMMIT or ROLLBACK iS
issued.

All UCFs must have at least one logical transaction (denoted by
the LOGICAL_TRANSACTION> opcode). In many user scenarios,
one logical transaction is sufficient. For those RDBMSS that
support multiple databases, each database must have its own
logical transaction. DATAGATE will create one process on the
RDBMS CPU for each logical transaction found in the UCF.

UCF Design The User Configuration File (UCF) is an ASClI text file composed of a
sequential listing of commands (opcodes) for DATAGATE. Itisthe
user's responsibility to ensure the proper organization of these opcodes
for his specific purpose.

[500 046-001 Datagate User's Guide | 19|

Configuring Datagate

(Continued on next page.)

[20]

Datagate User's Guide

500 046-001]

Configuring Datagate

UCF Design (cont) An opcode may begin at any location on the line aslong asit isthe first
text item and isimmediately followed by one or two right angle
brackets. Most opcodes, with afew exceptions, allow up to two
parameters. Thefirst parameter will generally be an Application
Database (ADB) variable name and the second parameter will usualy be
adefault value for the operation. Constant (token) definitions are
supplied for default entries, where appropriate, in an attempt to reduce
confusion.

The generd syntax of all DATAGATE opcode statement is as follows.

OPCCDE> DBNCDE: : DB_NAME: VARI ABLE ; DEFAULT_VALUE
OPCCDE>> DBNODE: DB_NAME: VARI ABLE ; DEFAULT_VALUE ! COMVENT

Where OPCODE is one of the opcodes described in this manual;
DBNODE isthe VM S node where the application database resides,
always followed by adouble colon ("::"); DB_NAME is the optional
database identifier, always followed by acolon (":"); NAME isthe name
of the usually optional database variable used by the command, and
DEFAULT_VALUE istheinitia value or the only value used if the
database variable ismissing. DEFAULT_VALUE may be aliteral numeric
(integer or float), a pre-defined constant (token), or a quoted text-string,
depending on the specific opcode used. See the example at the end of
this manual for specifics.

The single">" indicates a continuously scanned statement, while ">>"
indicates a statement that is executed only once at startup or restart.

The exclamation point denotes the start of acomment. Anything to the
right of the exclamation point isignored. Imbedded comments are
illegal and you may therefore start comments only to the right of any
opcodes you wish to use. Itislegal to have aline which containsonly a
comment. Further, all spaces and tabs, other than those enclosed in
double quotes, aswell as blank lines, will be ignored.

Many opcodes have their own system defined default value. Usually
the value need not be specified if the default value matches your system
requirements. Any default entry supplied to the right of the semicolon is
substituted for the system default value for the current opcode only.
This means that subsequent uses of the same opcode will still have the
original system default value.

[500 046-001 Datagate User's Guide | 21}

Configuring Datagate

UCF Design

The DATAGATE Opcodes

The "control" opcodes are those that break the UCF into sections.
They are asfollows.

DEFINE>

INIT>

PROCESS>
LOGICAL_TRANSACTION>
END>

Thefirst opcodein every UCF must be the DEFINE> opcode.
This opcode flags the start of the definition section. Any
opcodes prior to the DEFINE> opcode areignored. Until either
the INIT> or the PROCESS> opcode is encountered, all statements
following the DEFINE> opcode are considered to beinitial
definitions, and are processed only once at startup, or at restart.
Any opcodes not considered legal in the definition section will
beignored. All opcodesin the definition section are "one shot"
opcodes. This means that they will be treated as though they
had two right angle bracketsimmediately following them. The
purpose of the definition section is to define customer licensing
information to the DATAGATE product. This meansthat each
of the following opcodes must appear in the definition section:

CUSTOMER CONFIG_CODE>
CUSTOMER_CONFIG_ID>
CUSTOMER _LOCATION>
CUSTOMER_NAME>
CUSTOMER_SW_LICENSE>
CUSTOMER USE LIMIT>

TheINIT> opcode, which may optionally be declared immediately
preceding the process section, indicates the beginning of the
initialization section. Opcodes found in this section are considered
to be initialization opcodes, and are processed only once at startup,
or at restart. This section permits the user to define some opcodes
that may otherwise be repeated throughout the UCF. The opcodes
defined in the initialization section will become, in effect, the new
defaults for that opcode. This new default maybe overriddenin a
corresponding LOGICAL_TRANSACTION> section.

The following opcodes (except for EXIT_IF>) may appear in the
initialization section to define values on auUCF wide basis. In
addition, each opcode may appear in the process section
following aLOGICAL_TRANSACTION> opcode to define values
for that particular logical transaction.

(Continued on next page.)

[22]

Datagate User's Guide 500 046-001]

Configuring Datagate

UCF Design

The DATAGATE Opcodes (cont)

ADB_IDENT>
ADB_NODE>

ADB_TYPE>
BATCH_FILE>
BATCH_PARAMETER P1>
BATCH_PARAMETER P2>
BATCH_PARAMETER P3>

BATCH_PARAMETER P8>
BATCH_QUE>

BIT NULL_DATA_VALUE>
DISABLE_RDBMS COMMAND>
ENABLE RDBMS COMMAND>
EXIT IF>

FLOAT NULL_DATA_VALUE>
NULLS CHECKING>

RDBMS IDENT>

RDBMS TY PE>
SET_MIN_TRANSACTION_TIME_TO>
SET VAR TO>

STRING NULL_DATA VALUE>
TIMEOUT>

TIMEOUT ACTION>

ZERO DATE>

The PROCESS> opcode, which flags the end of the definition and
initialization sections and the beginning of the process section, is
also required. Any opcodes not considered legal in the process
section isignored. All logical transactions should be defined in
this section. All of the following opcodes must appear in this
section.

ADD_TO VAR>
CLEAR_STATUS IF>
COMMIT_AND_CLR_IF>
COMMIT_IF>

DISPLAY_END_OF DATA_AT>
DISPLAY_MORE_DATA_AT>
DISPLAY_NEXT_ROW_INDEX_AT>
DISPLAY_RDBMS_STATUS AT>
DISPLAY _SQLCODE_AT>
DISPLAY_SQL_DONE AT>
DISPLAY _TOTAL_ROWS AT>
EXECUTE AND_CLR IF>
EXECUTE_COMMIT_AND_CLR IF>

(Continued on next page.)

[500 046-001

Datagate User's Guide | 23]

Configuring Datagate

UCF Design
The DATAGATE Opcodes (cont)

UCF Summary

EXECUTE_COMMIT _IF>
EXECUTE_|IF>
LOGICAL_TRANSACTION>
PRIMARY_STATUS AT>
ROLLBACK_AND CLR IF>
ROLLBACK_|F>

ROW_COUNT>

ROW _START>
SECONDARY_STATUS AT>
SQL_STATEMENT>
SUBMIT_BATCH_AND_CLR IF>

The END> opcode, which is required, signals the end of the
UCF. All opcodes following the END> opcode are ignored.

Summary:
1) All opcodesendin™>" or ">>",

2) Not all opcodes support both parts of NAME; DEFAULT_VALUE;
the";" isrequired when either, or both are given.

3) All licensing information must follow DEFINE> and precede
PROCESS>.

4) All initialization opcodes follow INIT> and precede PROCESS>.
5) Any text following an"!" on aline will be ignored.

6) A LOGICAL_TRANSACTION> opcode must be the first
following the PROCESS> opcode.

To reiterate, the general format of all DATAGATE configuration
statementsin aUCF fileis asfollows.

COMVAND> NAME; DEFAULT_VALUE ! COVMENT

Where COMMAND is one of the configuration commands
(Opcodes) described in this manual; NAME is the name of an
usually optiona database variable used by the command and
DEFAULT_VALUE istheinitia value or the only value used if the
database variable ismissing. |If the database NAME is provided,
the DEFAULT_VALUE will be replaced at run time by the value of
the variable.

(Continued on next page.)

[24|

Datagate User's Guide 500 046-001]

Configuring Datagate

UCF Design

UCF Summary (cont)

A single">" indicates a continuously scanned statement, while ">>"

indicates a statement that is executed only once at startup or restart.
+ Note:

Y ou must include the six customer identification
commands exactly as they appear in your
DATAGATE License Agreement. The commands
should be placed immediately after the DEFINE>
statement.

An example of auser configuration file (UCF) islocated at the
back of this manual.

DATAGATE Triggers
TRUE. A trigger isany CRISP variable of type INTERMEDIATE,
NUMERIC, LONG, or FLOAT. Thetrigger is considered to be TRUE if its
value isnon-zero; the trigger iSFALSE if itsvalueiszero. A trigger may
not be of type COUNTER, TIMER, Or STRING.

In DATAGATE, aSQL statement is executed when atrigger is

A CRISP variable becomes the trigger for a SQL statement when it is
used with one of the following opcodes:

EXECUTE_IF>
EXECUTE_AND_CLR_IF>
EXECUTE_COMMIT_IF>
EXECUTE_COMMIT_AND_CLR_IF>

During each scan of the UCF, al triggers are read. When they become
TRUE, actions are performed according to the EXECUTE type opcode as
follows:

EXECUTE_IF>

1) Read dl values necessary to complete the sQL statement.

2) Executethe sQL statement.

3) For SELECT statements, write the values found back to CRISP.
4) Write any associated values found in the DISPLAY type opcodes.
EXECUTE_AND_CLR_IF>

1) Read dl values necessary to complete the sQL statement.

2) Executethe sQL statement.

[500 046-001

Datagate User's Guide | 25|

Configuring Datagate

(Continued on next page.)

[26|

Datagate User's Guide

500 046-001]

Configuring Datagate

DATAGATE Triggers (cont) 3) For SELECT statements, write the values found back to
CRISP.

4) Write any associated values found in the DISPLAY type opcodes.

5) Writeavalue of 0 to the trigger variable.
« EXECUTE_COMMIT_IF>

1) Read dl values necessary to complete the sQL statement.

2) Executethe sQL statement.

3) For SELECT statements, write the values found back to CRISP.

4) Write any associated values found in the DISPLAY type opcodes.

5) Issue aCOMMIT.
« EXECUTE_COMMIT_AND_CLR_IF>

1) Read dl values necessary to complete the sQL statement.

2) Executethe sQL statement.

3) For SELECT statements, write the values found back to CRISP.

4) Write any associated values found in the DISPLAY type opcodes.

5) Issue aCOMMIT.

6) Writeavaue of Otothetrigger variable.
If an error isfound while executing the SQL statement, only steps 1) and
2) will be performed. The only values to be written back to the CRISP
database will be the SQLCODE value and the RDBMS_STATUS vaueif the
user specified one of both of these values to be returned. In the event of
an error, acoMMIT will not be issued and the trigger will not be cleared.

Instead, a message is displayed either on the system console or in the log
file abatch job.

[500 046-001 Datagate User's Guide | 27|

Configuring Datagate

CRISP Variable Syntax crispvariableswill appear throughout the UCF. The complete

syntax for aCRISP variableis as follows.
[node-1[, node- 2] ::][db:]varname[(subscript)][*]
Where:
node-1 isthe node name of amachine that has the data
node-2 isan aternate node name of amachine that has the data.
db isthe name of the CRISP database.
varname isthe name of the variable in the CRISP database.

subscript isan integer, or symbol name in the database, that is
used as a subscript value.

* isasymbol used to indicate the value of the variableisto
be used only once when multiple rows are to be inserted.

An example of afull variable nameisasfollows.
AZVAXL: : TAGTST: W.11000(RL0O0000)

Users may use the full variable specification each time, or €lse use the
ADB_NODE> and ADB_IDENT> opcodes to set up defaultsfor all CRISP
variables found until the defaults are explicitly over-ridden by using a
full variable specification, or by using the ADB_NODE> and/or
ADB_IDENT> opcodes again to set up new defaults. Given the following
excerpt from a UCF.

ADB_NODE> ; "AZVAX1"
ADB | DENT> ; "TAGTST"
*

' *
EXECUTE | F> GET | F113 :
*

*

EXECUTE_| F> AZVAX2: : OTHRDB: GET | F111 ;
*

Cx

EXECUTE | F> GET | F112 :

ADB_| DENT> ; " CSPTST"
*

*

EXECUTE | F> GET CRI SP;

(Continued on next page.)

[28]

Datagate User's Guide 500 046-001]

Configuring Datagate

CRISP Variable Syntax Thevariable GET_IF113isassumed to bein the TAGTST database

(cont)

on node

AZVAXL GET_IF111isfound on node AzvAX2in database OTHRDB but
the defaults are still AzvAX1and TAGTST. Thismeansthat GET_IF112is
to befound on AZVAX1in TAGTST. Now, the ADB_IDENT> opcode is
used to change the default database, but not the node; GET_CRISP should
be found on node AzvAX1in database CSPTST.

+ Note:

The ADB_NODE> and ADB_IDENT> opcodes MUST be
used before the first CRISP variable that is not specified
using the complete syntax. Thereis NO system default
for node or database.

DATAGATE And SQL DATAGATE will findits SQL statements viathe SQL_STATEMENT>

Statements

opcode. DATAGATE does not process the SQL_STATEMENT opcodes
until the associated trigger istrue. At that time, it builds the SQL
statement, parsesit, and executesit. SQL statements tend to become
long rather quickly, so DATAGATE will concatenate all strings found in
consecutive SQL_STATEMENT> opcodes until a terminating semi-colon
isfound. The"trigger" for the SQL statement is found with one of the
following opcodes. EXECUTE_IF>, EXECUTE_AND_CLR_IF>,
EXECUTE_COMMIT_IF>, Or EXECUTE_COMMIT_AND_CLR_IF>.

By default INSERT and SELECT are the only RDBMS commands available
unless the user specifically enables them.

Thisisto prevent the user from unintentionally making disastrous changes
to the database. To enable a specific command, use the

ENABLE_RDBMS COMMAND> opcode. The tokens of ALTER, COMMENT,
CREATE, DELETE, DROP, GRANT, INSERT, REVOKE, SELECT, and
UPDATE have been provided to make it easy to specify the command to be
enabled. These are the only commands that are currently supported by
DATAGATE inasqQL statement. It isaso possible to disable acommand
by using the DISABLE_RDBMS_COMMAND> opcode.

Note that the SQL commandsCoMMIT and ROLLBACK are missing from
thelist of allowable commands. Thisisbecause DATAGATE provides
the means to do this through specia opcodes other than the
SQL_STATEMENT> opcode. When setting the trigger for a sQL
statement, aCcoOMMIT isimplied if either the EXECUTE_COMMIT_IF> or
EXECUTE_COMMIT_AND_CLR_IF> opcodes are used. A COMMIT will
beissued if the trigger associated with either the COMMIT_IF> or
COMMIT_AND_CLR_IF> opcodesistrue. There are no opcodes that
execute a SQL statement and then issue aROLLBACK; it is assumed that
most data is expected to be made permanent in the relational database. It
is expected that aROLLBACK will only be issued in the event of an error.

(Continued on next page.)

[500 046-001

Datagate User's Guide | 29 |

Configuring Datagate

DATAGATE and SQL If acrisp application logicisin control of the DATAGATE data

Statements (cont)

transfers,

make sure that either the DISPLAY_SQLCODE_AT> opcode or the
DISPLAY_RDBMS_STATUS> opcode is used with each SQL statement.
DATAGATE will not clear the trigger variable unless the SQLCODE
status returned by the RDBMS is non-negative; the SQLCODE status will
be written back to the CRISP database even in the event of an error.
Refer to the following sections for examples.

DATAGATE will locate the names of CRISP variablesin the SQL
statements by the pound sign (#) which must precede them. Inthe
following sQL statement, the CRISP variables are EMP_VAR and
LAST_VAR.

SQL_STATEMENT> ; "I NSERT | NTO EMPLOYEES"
SQL_STATEMENT> ; "(EMPLOYEE_I D, LAST_NAME)"
SQL_STATEMENT> ; " VALUES"

SQL_STATEMENT> ; "(#EMP_VAR, #LAST VAR):"

If DATAGATE executed the previous SQL statement, the values of
EMP_VAR and LAST_VAR would be substituted before the statement is
executed.

+ Note:

Each sQL statement may be made up from many SQL_STATEMENT>
opcodes but must have a single execute type opcode. The variables
associated with the execute opcodes for different SQL statements
may be the same so that several sQL statements will execute when a
singletrigger isset. Inthiscase, the statements will be executed in
the order they are found in the UCF. Thisisreferred to as 'chaining'
SQL statements. It is suggested that the EXECUTE_IF> opcode be
used for all sQL statements except the last one; the opcode for the
fina chained sQL statement should be EXECUTE_AND_CLR_IF> or
EXECUTE_COMMIT_AND_CLR_IF>.

How To Do A SQL INSERT

Userswill specify the INSERT statement when they want to add one
or morerowsto arelational database table. DATAGATE does no
checking to verify that the relation specified isin fact atable and not
aview. Inserting arow into aview may cause the row to be "lost".
(For more information on views see your RDBMS documentation).

The following is an example from a UCF file.

ADB_NCDE> ;" AZVAX2"
ADB_| DENT> ;" EMPADB"
SQL_STATEMENT> ; "I NSERT | NTO EMPLOYEES"

SQL_STATEMENT> : "(EMPLOYEE_I D, LAST_NAME, FI RST_NAME)"
SQL_STATEMENT> : " VALUES"

SQL_STATEMENT> ; "(#EMPNO VAR, #LAST VAR, #Fl RST_VAR) ;"
DI SPLAY_SQLCCODE_AT> STATUS_VAR ;

DI SPLAY_SQL_DONE_AT> | NSERT DONE_VAR ;

EXECUTE_COWM T_AND CLR | F> | NSERT_VAR :

[30]

Datagate User's Guide 500 046-001]

Configuring Datagate

(Continued on next page.)

[500 046-001 Datagate User's Guide | 31}

Configuring Datagate

DATAGATE and SQL Statements

How To Do A SQL INSERT (cont)

When the value of INSERT_VAR (in CRISP application database
EMPADB on VAX node AZVAX?2) is TRUE, DATAGATE
performs the following:

1) Readthe variablesEMPNO_VAR, LAST_VAR, FIRST_VAR
from the CRISP database named EMPADB on node AZVAX2.

2) Substitute the values read into the SQL statement.
"INSERT INTO EMPLOYEES (EMPLOYEE__ID,LAST_NAME, FIRST_NAME, ...);"

3) If no errors are found, issue a COMMIT.
4) Writethe RDBMS SQLCODE vaueto the variable STATUS VAR.
5) If no errorswere found, write avalue of O to the variable

INSERT_VAR and avalue of 1 to the variable
INSERT_DONE_VAR.

How To Do A SQL UPDATE

Userswill specify the UPDATE statement when they want to
modify one or more rowsin arelational database table.
DATAGATE does no checking to verify that the relation specified
isinfact atable and not aview. Updating aview is not
recommended. For more information on views refer to your
RDBMS documentation).

UPDATES are performed in the same fashion as INSERTS with
one exeception: the UPDATE command must first be enabled.
Failure to enable the UPDATE will prevent the execution of the
SQL statement. In this case, an error message is then sent to the
system console or written to the log file.

For purposes of the following example, it is assumed that the
ADB_IDENT> opcode has already been used so that the CRISP
variables (indicated by pound signs (#)) found in the sQL
statements can be located in a CRISP ADB.

ENABLE_RDBMS_COMVAND> ; UPDATE
SQL_STATEMENT> ; "UPDATE EMPLOYEES"

SQL_STATEMENT> ; "SET LAST_NAME = #LAST_VAR, "
SQL_STATEMENT> ; "FI RST_NAME = #FI RST_VAR"
SQL_STATEMENT> ; "WHERE EMPLOYEE_ | D = #EMPNO_VAR; "

DI SPLAY_SQLCODE_AT> UPD_STATUS VAR ;
DI SPLAY_SQL_DONE_AT> UPDATE_DONE_VAR ;
EXECUTE_COMM T_AND CLR | F> UPDATE_VAR :

[32]

Datagate User's Guide 500 046-001]

Configuring Datagate

(Continued on next page.)

[500 046-001 Datagate User's Guide | 33}

Configuring Datagate

DATAGATE and SQL Statements
How To Do A SQL UPDATE (cont)

Because UPDATES have been enabled, whenever the value of
UPDATE_VAR (in the associated CRISP ADB) is non-zero,
DATAGATE will perform the following.

1) Readthe variablesEMPNO_VAR, LAST_VAR, FIRST_VAR
from the associated CRISP database.
2) Substitute the values found into the SQL statement.
"UPDATE EMPLOYEES SET LAST=NAME =#LAST_VAR, ..., #EMPNO_VAR;"
3) If noerrors are found, issue a COMMIT.

4) Write the RDBMS SQLCODE vaueto the variable
UPD_STATUS VAR.

5) If no errorswere found, write avalue of 0 to the variable
UPDATE_VAR and avalue of 1 to the variable
UPDATE_DONE_VAR.

How To Do A SQL DELETE

Users should use caution when performing the SQL DELETE
function. It has been provided with the DATAGATE interface
for the sake of completeness. Aswith the UPDATE function, the
DELETE command must first be enabled before it can be used.

For purposes of the following example, it is assumed that the
ADB_IDENT> opcode has already been used so that the variables
associated with the pound signs (#) found in the SQL statements
can be located in aCRISP ADB.

ENABLE_RDBMS_COMVAND> ; DELETE
SQL_STATEMENT> ; "DELETE FROM EMPLOYEES"
SQL_STATEMENT> ; "WHERE EMPLOYEE | D = #EMPNO_VAR; "

DI SPLAY_SQLCODE_AT> DEL_STATUS_VAR ;
DI SPLAY_SQL_DONE_AT> DELETE_DONE_VAR ;
EXECUTE_AND_CLR | F> DELETE_VAR :
DI SABLE_RDBVS_COVIVAND> . DELETE

Because DELETES have been enabled, when the value of
DELETE_VAR (in the associated CRISP ADB) is non-zero,
DATAGATE will perform the following.

(Continued on next page.)

Datagate User's Guide 500 046-001]

Configuring Datagate

DATAGATE and SQL Statements
How To Do A SQL DELETE (cont)

1) Read the variable EMPNO_VAR from the associated CRISP
database.

2) Substitute the value found into the SQL statement.
"DELETE FROM EMPLOYEESWHERE EMPLOYEE__ID =#EMPNO_VAR;"

3) Writethe RDBMS SQLCODE valueto the variable
DEL_STATUS VAR.

4) If no errorswere found, write avalue of 0 to the variable
DELETE VARand avalue of 1 tothevariable
DELETE_DONE_VAR

How To Do A SQL SELECT

The DATAGATE form of the SQL SELECT statement isthe only
one that looks dightly different from standard interactive sQL.
The form of the SELECT statement in DATAGATE resemblesa
programmatic singleton SELECT with use of theINTO clause.
The variablesin the INTO clause will be the CRISP variables
where DATAGATE isto write the data retrieved from the
SELECT statement. Aswith the other DATAGATE SQL syntax,
these CRISP variables are to be preceded by a pound sign (#).

There isno need to specifically enable the SELECT command as
it is enabled by default.

Retrieving A Single Row

The following is an example of the simplest form of the
SELECT. In this example, exactly onerow isretrieved
from the relational database and the values written to
CRISP; it is assumed that the EMPLOYEE_ID field in the
database is unique and that all CRISP variables are of type
STRING; it is aso assumed that the ADB_IDENT> opcode
has already been used so that the variables associated
with the pound signs (#) found in the SQL statements can
be located in aCRISP ADB.

(Continued on next page.)

[500 046-001 Datagate User's Guide | 35|

Configuring Datagate

DATAGATE and SQL Statements
How To Do A SQL SELECT
Retrieving A Single Row (cont)

STRI NG_NULL_DATA_VALUE> © "No data"
SQL_STATEMENT> ; "SELECT LAST_NAME, FI RST_NAME"
SQL_STATEMENT> : "I NTO #LAST_VAR, #FI RST_VAR'

SQL_STATEMENT> ; "FROM EMPLOYEES"
SQL_STATEMENT> ; "WHERE EMPLOYEE_| D = #EMPNO_VAR; "

DI SPLAY_SQLCODE_AT> SEL_STATUS_VAR :
DI SPLAY_SQL_DONE_AT> SELECT_DONE_VAR ;
EXECUTE_AND _CLR | F> SELECT VAR :

When the value of SELECT_VAR (in the associated CRISP
ADB) isnon-zero, DATAGATE will perform the
following.

1) Read thevariable EMPNO_VAR from the associated
CRISP database.

2) Substitute the value found into the SQL statement.

"SELECT LAST_NAME, FIRST_NAME, ..., #EMPNO_VAR);"

3) If amatching row isfound, take the value found in
the LAST_NAME column and write it to the CRISP
variable LAST_VAR and take the value found in the
FIRST_NAME column and write it to the CRISP
variable FIRST_VAR.

4) If no matching row isfound, the values associated
with the STRING_NULL_DATA_VALUE> opcode will
be written to the associated CRISP variables. In this
case the value "No data”’ will be written to each of the
variables LAST VAR and FIRST_VAR.

5) Writethe RDBMS SQLCODE valueto the variable
SEL_STATUS VAR.

6) If no errorswere found, write avalue of 0 to the
variable SELECT_VAR and avalue of 1 to the variable
SELECT_DONE_VAR

[36]

Datagate User's Guide 500 046-001]

Configuring Datagate

DATAGATE and SQL Statements
How To Do A SQL SELECT (cont)
Retrieving Multiple Rows

The following example shows how to read all rowsin a
table one at atime. It isthe ROW_COUNT> opcode that
specifies that only onerow isto beretrieved at atime.
TheROW_START> opcode specifies which row in the
table isto be found and written to the CRISP ADB.

SET_VAR TO>> ROW START_VAR ; 1
STRING_NULL_DATA VALUE> - "No Data"
ROW START> ROW START_VAR ;

ROW COUNT> 1
SQL_STATEMENT> ; "SELECT LAST_NAMVE, FI RST_NAVE"
SQL_STATEMENT> ; "I NTO #LAST_VAR, #FI RST_VAR'

SQL_STATEMENT> ; "FROM EMPLOYEES"
SQL_STATEMENT> ; "ORDER BY LAST_NAME; "

DI SPLAY_END OF DATA AT> COW T_VAR :
DI SPLAY_TOTAL_ROWS_AT> TOTAL_VAR ;
DI SPLAY_NEXT_ROW | NDEX_AT> ROW START_VAR ;
EXECUTE_AND CLR | F> SELECT VAR :
COW T_AND CLR [F> COW T_VAR :

When DATAGATE performsitsinitiaization, it will
write avalue of 1 to the variable ROW_START VAR. It
will do this only once (as shown by the double angle
bracket (>>)). It isassumed for purposes of this
example, that DATAGATE encounters no errors; it is
also assumed that the EMPLOYEES table has only 2 rows.
The ORDER BY clause in the sQL statement itsdlf
determines which of the 2 rowsis"first" and which one
is"second".

The following shows how the rows are retrieved the first
timethat SELECT_VAR is Set:

1) Sincethevaue of ROW_START VAR isone, read the
first row in theEMPLOYEES table.

2) Write the following values to the CRISP database:

a) Takethevauefoundinthe LAST _NAME column
of thefirst row and write it to the CRISP variable
LAST_VAR.

b) Takethevauefound inthe FIRST_NAME column
of thefirst row and write it to the CRISP variable
FIRST VAR.

[500 046-001 Datagate User's Guide | 37|

Configuring Datagate

(Continued on next page.)

[38]

Datagate User's Guide

500 046-001]

Configuring Datagate

DATAGATE and SQL Statements
How To Do A SQL SELECT
Retrieving Multiple Rows (cont)

¢) Sincetherow returned wasrow 1, the next
available row isrow 2; therefore write the value
of 2to ROW_START_VAR. (Thisisdueto the
DISPLAY_NEXT_ROW_INDEX_AT> opcode.)

d) Sincethelast row was not found, write avalue
of 0 to COMMIT_VAR. (Thisisdueto the
DISPLAY_END_OF DATA_AT> opcode.)

€) Sincethefirst row in the table was returned,
writeavalue of 1to TOTAL_VAR. (Thisisdueto
the DISPLAY_TOTAL_ROWS AT>opcode.)

3) If no errors were found, write avalue of O to the
variable SELECT VAR.

The next timethat the SELECT_VAR variableisfound to
be TRUE, the following will occur.

1) Sincethevalue of ROW_START_VAR isnow 2, read
the second row in the EMPLOYEES table.

2) Write thefollowing values to the CRISP database:

a) Takethevauefoundinthe LAST_NAME column
for the second row and write it to the CRISP
variable LAST_VAR

b) Takethevaluefound inthe FIRST_NAME column
for the second row and write it to the CRISP
variable FIRST_VAR.

¢) Sincetherow returned was row 2, the next
available row isrow 3; therefore write the value
of 3t0 ROW_START VAR.

d) Sincethelast row was not found, write avalue
of 0 to COMMIT_VAR.

€) Since the second row in the table was returned,
writeavaue of 2to TOTAL VAR

3) If no errors were found, write avalue of O to the
variable SELECT VAR.

(Continued on next page.)

[500 046-001 Datagate User's Guide | 39|

Configuring Datagate

DATAGATE and SQL Statements
How To Do A SQL SELECT
Retrieving Multiple Rows (cont)

The next timethat the SELECT_VAR variableisfound to
be TRUE, the following will occur.

1) Sincethevalue of ROW_START_VARisnow 3, try to
read the third row in the EMPLOYEES table. It isnot
found.

2) Writethefollowing values to the CRISP database:

a) Takethevauefoundinthe
STRING_NULL_DATA_VALUE> opcode ("No
Data')and writeit to the CRISP variable
LAST_VAR.

b) Takethevaluefoundinthe
STRING_NULL_DATA_VALUE> opcode ("No
Data')and writeit to the CRISP variable
FIRST VAR.

¢) Sincearow was not returned, the next available
row isrow 1, therefore write the value of 1 to
ROW_START_VAR.

d) Sincethelast row wasfound, write avalue of 1
to COMMIT_VAR.

€) Sincethe second row in the table wasthelast to
be returned, write avalue of 2to TOTAL_VAR.

3) If no errors were found, write avalue of O to the
variable SELECT VAR.

4) BecauseCOMMIT_VAR isSnow Set, issue a COMMIT
and write avalue of 0 to the COMMIT_VAR variable.

[40| Datagate User's Guide 500 046-001]

Configuring Datagate

DATAGATE and SQL Statements (cont)

Adhoc SQL

Adhoc sQL isthe ability to take the entire SQL statement itself
from CRISP variables. Users may consecutively list the
SQL_STATEMENT> opcode many timesin the UCF with the
names of STRING variablesthat are to hold a SQL statement.
When the trigger associated with the SQL statement is TRUE,
DATAGATE will read each of the variables, concatenating them
together until the last character found isasemicolon (;).

Users may also use a combination of CRISP variables and hard-

coded default values which will be concatenated together when
the associated trigger becomes TRUE.

As an example, suppose users wished to create atable at the end
of each day. The columnsin the tableswould be the same, but

the name of the table would be dependent on some criteria

established in aCRISP application logic. Users would do the
following in the UCF.

ENABLE_RDBMS_COVVAND> ;

SQL_STATEMENT> :
SQL_STATEMENT>

SQL_STATEMENT>
SQL_STATEMENT> :
SQL_STATEMENT> :

DI SPLAY_SQLCODE_AT>

" CREATE TABLE"
TABLE_NAVE_VAR :
"(COLUMN_1 CHAR(5),
" COLUMN 2 REAL,
COLUMN 3 LONG);"
CREATE_STATUS_VAR ;

DI SPLAY_SQL_DONE_AT> TABLE_CREATED VAR ;
EXECUTE_COMM T_AND CLR | F> CREATE_TABLE VAR :
DI SABLE_RDBMS_COVMAND> ;

While highly flexible, the previous scenario is CPU intensive.

Usethisfeature only if speed isnot anissue. Also, where
possible, avoid placing these types of SQL statementsin the

CREATE

CREATE

samelogical transaction as SQL statementsthat are time critical.

Another example of the capability to specify SQL statementsin
CRISP variablesis the following.

SQL_STATEMENT> ;
SQL_STATEMENT> :
SQL_STATEMENT> :
SQL_STATEMENT> :
SQL_STATEMENT>
SQL_STATEMENT>
ROW_COUNT>

ROW START>

"SELECT LAST NAME, FI RST_NAME"
"| NTO #LAST VAR, #FI RST_VAR'
" FROM EMPLOYEES"
" ORDER BY"
ORDER VAR

ROW START VAR

DI SPLAY_NEXT_ROW | NDEX_AT> ROW START_VAR

DI SPLAY_SQLCODE_AT>

SELECT_STATUS_VAR

DI SPLAY_SQL_DONE_AT> SELECT_DONE_VAR
DI SPLAY_END_OF DATA _AT> COW T_VAR

EXECUTE_AND _CLR | F>

SELECT_TRI GGER_VAR ;
COW T_AND CLR | F> COW T_VAR :

(Continued on next page.)

[500 046-001

Datagate User's Guide

[41]

Configuring Datagate

DATAGATE and SQL Statements

Adhoc SQL (cont)

In the previous example, the name of the column to sort by has
not been specified in the SQL statement. Instead, itsvalueisto
come from a CRISP variable. Depending on the value of the
CRISP variable (which must be the name of acolumnin the

EMPLOYEES table), the data will be sorted differently.

DATAGATE and SQL Statements (cont)

Retrieving Data From Multiple CRISP Databases

Users do not need to limit SQL statements that retrieve datafrom
asingleCRISP database. Simply use the ADB_NODE> and
ADB_IDENT> opcodes for one database, and then use the full
variable specification for any variables not in the default

node/database. The following isasimple example.

ADB_NODE>
ADB_| DENT>

SQL_STATEMENT> :
SQL_STATEMENT> :
SQL_STATEMENT> :
SQL_STATEMENT> :

SQL_STATEMENT> :
EXECUTE | F>

" AZVAX1"
" TAGTST"
"| NSERT | NTO EMPLOYEES"
"(EMPLOYEE_| D, LAST _NAME, FI RST_NAME)"
" VALUES"
" (#EMP_VAR, #CSPTST: LAST_VAR "
" #AZVAX2: : FI RST_VAR) :

AZVAX3: : TSTTST: TRl GGER VAR

The following table shows where each of the four CRISP
variables are located.

Variable Name CRISP Node CRISP Database
EMP_VAR AZVAX1 TAGTST
LAST_VAR AZVAX1 CSPTST
FI RST_VAR AZVAX2 TAGTST
TRI GGER VAR AZVAX3 TSTTST

[42] Datagate User's Guide

500 046-001]

Configuring Datagate

NULL Data

The concept of aNULL isvery important in relational database theory,
however there isno similar concept in the CRISP language. A meansis
therefore provided to interpret NULL datain the relationa database.
Userswill usethe* NULL_DATA_VALUE> opcodes, along with the
NULLS_CHECKING> opcode so that datais correctly interpreted by
DATAGATE.

First, when SELECTing data from the relational database and writing that
data back to CRISP, it ispossible that avauein arelational columnis
NULL. This meansthat there isno datato write back to CRISP.
DATAGATE will write the values to CRISP that are associated with the
following opcodes:

CRISP DataType DATAGATE Opcodes Default Vaue

STRING STRING_NULL_DATA_VALUE>
LONG NUMERIC_NULL_DATA_VALUE> -99
NUMERIC NUMERIC_NULL_DATA_VALUE> -99
FLOAT FLOAT_NULL_DATA _VALUE> -99.0
LOGICAL BIT_NULL_DATA VALUE> 0

Users may use these defaults, or may use the opcodes to override the
default values. Each of the above opcodes may be used with aCRISP
variable, however only one of each of the above opcodes may appear in
each logical transaction.

If users need to write NULL valuesto arelational database column, the
NULLS CHECKING> opcode isused. The tokensON and OFF are
provided to determine whether aNULL or avalueisto be written to the
relational database. If aNULL isto be written to the relational database
NULLS CHECKING must be ON and the value found in the CRISP variable
must be the same as the corresponding null data value.

Asan example:

SET_VAR TO>> FLOAT VAR ; -99.0
SET_VAR _TO>> NUMBER VAR : 2200

FLOAT _NULL_DATA VALUE> ; -99.0

|

NULLS CHECKI NG> ; ON

SQL_STATEMENT> ; "I NSERT | NTO TEST_TABLE"
SQL_STATEMENT> : "(FLOAT_COL_1, NUVERI C_COL_1)"
SQL_STATEMENT> : " VALUES"

SQL_STATEMENT> ; "(#FLOAT_VAR, #NUMBER VAR);"
EXECUTE_| F> TRI GGER VAR ;

|

NULLS CHECKI NG> ; OFF

SQL_STATEMENT> ; "1 NSERT | NTO TEST_ TABLE"
SQL_STATEMENT> ; "(FLOAT_COL_1, NUVERI C_COL_1)"
SQL_STATEMENT> : " VALUES"

SQL_STATEMENT> ; "(#FLOAT_VAR, #NUMBER VAR);"
EXECUTE_AND CLR | F> TRI GGER VAR :

(Continued on next page.)

[500 046-001

Datagate User's Guide | 43}

Configuring Datagate

NULL Data (cont)

When TRIGGER VAR istrue, two rows will be written to the table
TEST _TABLE asfollows:

FLOAT COL_1 NUMERIC_COL_1
NULL 2200
-99.0 2200

ItisNOT possible to use NULLS_CHECKING to bypass thelSNULL
portion of asQL WHERE clause. If you need to retrieve rows where a
column value ISNULL, the WHERE clause of the SQL statement must
contain the ISNULL predicate.

Supported Data Types Thefollowing table describes the CRISP and RDBMS data types that

will be supported. It should be noted that the data types in the RDBMS
column are ANSI Standard sQL keywords.

CRISP RDBMS SIZE

NUVERI C SMALLI NT 2 BYTE
LONG | NTEGER 4 BYTE
| NTERVEDI ATE SMALLI NT 2 BYTE
FLOAT REAL 4 BYTE
STRI NG CHAR(n) n BYTE

DATAGATE will automatically perform numeric data type conversions
(i.e., CRISPFLOAT t0 RDBMSINTEGER Of RDBMS SMALLINT to CRISP
LONG, as necessary). DATAGATE does not support character to
numeric or numeric to character conversions.

In addition, DATAGATE supports datatransfersin and out of the
RDBMS DATE data type as follows.

From To
CRISP LONG RDBMSDATE
CRISP STRING RDBMSDATE
RDBMSDATE CRISP LONG
RDBMSDATE CRISP STRING

When DATAGATE encounters atransfer of datafrom an RDBMS DATE
type to a CRISP STRING type, it will write the date to the string in the
standard VMS character date format:

DD- MMM YYYY HH MM SS. SS
Similarly, when DATAGATE performs a CRISP STRING t0 RDBMS

DATE transfer, the CRISP STRING must contain datain the above
specified format (1E 14-JUL-1990 23:00:00.00).

(Continued on next page.)

Datagate User's Guide 500 046-001]

Configuring Datagate

Supported Data Types When DATAGATE encounters atransfer of datafrom an RDBMS

(cont)

DATEto a

CRISPLONG, it will interpret the date as the number of seconds since the
default zero date and write that value as an integer to the specified CRISP
variable; a negative value means that the date returned by the RDBMS
was prior to the default zero date; a positive value means that the dateis
after the default zero date. Unless users override the zero date using the
ZERO_DATE> opcode, the default zero dateis:

"01-APR-1970 00:00:00.00"

Refer to the description of the ZERO_DATE> opcode in the Opcode
Definitions section.

Similarly, for conversions from CRISP LONG variablesto RDBMS DATE
columns, the datain the CRISP variable will be interpreted as the number
of seconds since the zero date beforeit is converted to the RDBMS DATE

type.

By providing the two types of DATE conversions, DATAGATE alows
usersthe ability to display dates on CRISP workstations (using STRING
variables), or to easily compare datesin the application logic (using
LONG variables).

DATAGATE DATE Functions The predefined DATE functions provide users with a

simple way to timestamp records that are written to the relational
database. The following two functions are provided.

» #<SYSTEM_DATE>
e #<SYSTEM_TIME>

When #<SYSTEM_TIME> is specified, DATAGATE takes the current
time from the vMS clock and stores that value in the associated column.
When #<SYSTEM_DATE> is specified, the hour:minute:second portion of
thetimeis zeroed, so that the time written to the database is midnight
while the date portion remains unchanged.

Thefollowing is an example of an INSERT statement using the time
function.

SQL_STATEMENT> ; "I NSERT | NTO BATCH REPORT"
SQL_STATEMENT> ; " (Tl MESTAMP, BATCH NUMBER, LOT_VALUE)"
SQL_STATEMENT> : "VALUES ("

SQL_STATEMENT> : "#<SYSTEM TI ME>, #BATCH VAR,
SQL_STATEMENT> ; "#LOT_VAR) ;"

In the example, the TIMESTAMP column in the BATCH_REPORT table
could be any of the RDBMS datatypes. DATE, CHAR, Or INTEGER.
DATAGATE will perform the DATE conversion for any of these types.

[500 046-001

Datagate User's Guide | 45|

Configuring Datagate

(Continued on next page.)

[46 | Datagate User's Guide 500 046-001]

Configuring Datagate

DATAGATE DATE Functions For Rdb/vMS, the date functions may also be used as

(cont)

part of the WHERE
clausein aSQL SELECT, UPDATE, or DELETE Statement:

SQL_STATEMENT>
SQL_STATEMENT>

SQL_STATEMENT> :
SQL_STATEMENT> :

SQL_STATEMENT>

; " SELECT BATCH REPORT_NUMBER, "
;" SW TCH_VALUE"

"I NTO #BATCH_NUMBER_VAR, #SW TCH VAL"
"FROM SOVE_TABLE"

; "WHERE TI MESTAVP = #<SYSTEM DATE>"

Dueto limitationsin the Ingres Dynamic SQL interface, DATE O LONG
conversions and DATE functions are not allowed in the WHERE clause of
an UPDATE, SELECT, or DELETE Statement.

Using CRISP Arrays By using CRISP arrays, users will be able to INSERT or SELECT more
than onerow at time. The ROW_COUNT> opcodeis used to tell
DATAGATE either how many rowsto INSERT or how many rows to
SELECT. The ROW_COUNT> opcode isignored for all other types of

SQL statements.

ROW_COUNT> And The SQL INSERT Statement

Tl
Row 1:
Row 2:
Row 3:
Row 4:
Row 5:

For INSERT statements, the ROwW_COUNT> opcode tells
DATAGATE how many rows are to beinserted; it also isthe

number of CRISP array elements that are to be used to make up
those rows.

Given the following portion of a UCF.

SQL_STATEMENT> ; "I NSERT | NTO SHI FT_AVERAGES"
. " (TI MESTAMP, ENG UNI T_NUM "
© "ENG_UNI T_VALUE) "

SQL_STATEMENT>
SQL_STATEMENT>

SQL_STATEMENT> :
SQL_STATEMENT> :

" VALUES"
"#<SYSTEM TI MVE>,

SQL_STATEMENT> ; "#ENGVL(0));"
DI SPLAY_SQLCODE_AT>
DI SPLAY_SQL_DONE_AT>
ROW COUNT>

EXECUTE_COMM T_AND _CLR | F>

EXECUTE_VAR :

#ENG(0) , "

STATUS_VAR ;
SQL_DONE_VAR

5

When the variable EXECUTE_VAR IS TRUE, DATAGATE will

perform the following:

1) Read the CRISP variables so that 5 rows are inserted into the
specified table asfollows:

VESTAMP ENG UNI T
| NSERT Ti e Val ue of ENE 0)
| NSERT Ti ne Val ue of ENG 1)
| NSERT Ti e Val ue of ENG 2)
I NSERT Ti e Val ue of ENG 3)
| NSERT Ti ne Val ue of ENGE 4)

ENG UNI T VALUE
Val ue of ENGVL(0)
Val ue of ENGVL(1)
Val ue of ENGVL(2)
Val ue of ENGVL(3)
Val ue of ENGVL(4)

[500 046-001

Datagate User's Guide

[47]

Configuring Datagate

(Continued on next page.)

[48| Datagate User's Guide 500 046-001]

Configuring Datagate

Using CRISP Arrays
ROW_COUNT> And The SQL INSERT Statement (cont)
2) If no errors are found, issue a COMMIT.

3) Writethe RDBMS SQLCODE value (which will be O if there
are no errors) to the STATUS_VAR variable.

4) If no errorsare found, write avalue of 1to SQL_DONE_VAR
and avaue of 0t0 EXECUTE_VAR.

In this particular example, the TIMESTAMP column values are
not guaranteed to be the same; the time valueitself is determined
at the exact moment that DATAGATE buildstherow. Seethe
section titled "Combining Arrays and Single Vaues' for
information on how to insert multiple rows with asingle
<SYSTEM_TIME> value.

ROW_COUNT>, ROW_START> And The SQL SELECT Statement

DATAGATE users have the ability to bring in multiple rows from a
guery by using theROW_COUNT> opcode to indicate how many
contiguous CRI SP database variables are available to hold data, and
then to specify thefirst of these variablesin the sQL statement. The
ROW_START> opcodeis used to indicated to DATAGATE which
row in the query isto be returned as the first row to the CRISP
database. By using theDISPLAY_NEXT_ROW_INDEX_AT> opcode
in conjunction with ROW_START>, this processis easily
maintained.

Here is an example from aUCF file.

SQL_STATEMENT> ; "SELECT ENG UNIT_NUM ENG UNI T_VALUE"
SQL_STATEMENT> : "I NTO #ENGU(0), #ENGVAL(4)"
SQL_STATEMENT> : "FROM SHI FT_AVERAGES"

SQL_STATEMENT> ; "WHERE ENG_UNI T_NUM'

SQL_STATEMENT> ; "= #ENGUVAL"

SQL_STATEMENT> : "ORDER BY ENG UNI T_VALUE; "

ROW START> ROW START_VAR ;
ROW COUNT> .5
DI SPLAY_NEXT_ROW | NDEX_AT> ROW START VAR ;

DI SPLAY_END OF DATA AT> COW T_VAR :
EXECUTE_AND _CLR | F> EXECUTE_VAR :
COW T_I F> COW T_VAR :

Assume for purposes of this example that the value of CRISP
variable ENGUVAL is 10, and that table SHIFT_AVERAGES has 9
rows where the value of column ENG_UNIT_NUM is 10. Also
assume that ROW_START VAR has avalue of 1 when
EXECUTE_VARIs set and that no RDBMS errors are found. The
first time that EXECUTE_VARIs set, the following takes place.

(Continued on next page.)
[500 046-001 Datagate User's Guide | 49 |

Configuring Datagate

Using CRISP Arrays

ROW_COUNT>, ROW_START> And The SQL SELECT Statement
(cont)

1) Thevaue of ENGUVAL will be read from CRISP and placed
in thesqQL statement.

2) Fiverows (the ROW_COUNT> value) will be returned to
CRISP as follows.

Vauesfrom Row 1 are written to: ENGU(0) & ENGVAL(4)
Vauesfrom Row 2 are written to: ENGU(1) & ENGVAL(5)
Vaues from Row 3 are written to: ENGU(2) & ENGVAL(6)
Valuesfrom Row 4 are written to: ENGU(3) & ENGVAL(7)
Vauesfrom Row 5 are written to: ENGU(4) & ENGVAL(8)

3) A vaue of 6 will bewritten to ROW_START_VAR; avaue of
O iswritten to COMMIT_VAR.

4) Thetrigger iscleared (avaue of 0 iswritten to EXECUTE_VAR).

Assuming that no changes are made to any data from an
application logic, the next time EXECUTE_VAR s set, the
following takes place.

1) Fiverows (the ROW_COUNT>value) will be returned to
CRISP as follows.

Vaues from Row 6 are written to: ENGU(0) & ENGVAL(4)
Vaues from Row 7 are written to: ENGU(1) & ENGVAL(5)
Vaues from Row 8 are written to: ENGU(2) & ENGVAL(6)
Vaues from Row 9 are written to: ENGU(3) & ENGVAL(7)
Null datavalues are returned to: ENGU(4) & ENGVAL(8)

2) A vaueof 1 will bewrittento ROW_START_VAR (sinceall
rows have been returned); avalue of 1 iswrittento
COMMIT_VAR.

3) Thetrigger iscleared (avalue of O iswritten to
EXECUTE_VAR).

4) Since COMMIT_VAR isnow set, a COMMIT isissued.

The next time that EXECUTE_VAR s set, the query will start
over.

+ Note:

Multiple row SELECTs and INSERTS are only
availableinto and out of CRISP arrays.

[50| Datagate User's Guide 500 046-001]

Configuring Datagate

Using CRISP Arrays (cont)

Combining Arrays And Single Values

Row 1:
Row 2:
Row 3:
Row 4.
Row 5:

Users can use this feature to insert multiple rowsin arelational
database table using the ROW_COUNT> opcode, where some
values are to come from arrays, and other values are to be fixed
for each row inserted. This method may also be used to assure
that al rowsinserted at the same time have the same
<SYSTEM_TIME> Or <SYSTEM_DATE> value.

The manner in which DATAGATE distinguishes which values
areto remain fixed is by the appearance of an asterisk (*)
following the last character of the CRISP variable name. Given
the following excerpt from a UCF.

SQL_STATEMENT> ; "I NSERT | NTO SHI FT_AVERAGES ("
SQL_STATEMENT> : "TI MESTAMP, ENG UNIT_NUM ENG UNI T_TYPE,"
SQL_STATEMENT> ; "ENG UNI T_VALUE) VALUES ("
SQL_STATEMENT> ; "#<SYSTEM TI ME>*, #ENGU(0)*, #ENGT*,"
SQL_STATEMENT> : "#ENG VAL(0));"

ROW COUNT> .5
EXECUTE_COW T_AND CLR | F> EXECUTE_VAR ;

Because the ROW_COUNT> valueis5, DATAGATE will INSERT
5 rowsinto the SHIFT_AVERAGES table when EXECUTE_VARIS
TRUE. Therowsinserted will be asfollows:

TI MESTAMP ENG UNI T _NUM ENG UNI T VALUE

Insert time Row 1 Value of ENGJ(0) Value of ENG VAL(O0)
Insert time Row 1 Value of ENGJ(0) Value of ENG VAL(1)
Insert time Row 1 Value of ENGJ(0) Value of ENG VAL(2)
Insert time Row 1 Value of ENGJ(0) Value of ENG VAL(3)
Insert tinme Row 1 Value of ENGU(0) Value of ENG VAL(4)

The asterisk (*) following the <sySTEM_TIME> function shows that all
rows are to have the same time; the asterisk (*) following ENGU(0) shows
that this value is also to remain fixed, as does the asterisk following ENGT,

Using DATAGATE To Userswill be able to write command procedures that will be

Submit Batch Jobs

submitted

to a specified batch queue when aCRISP variable iISTRUE. This
functionality has been provided to allow users to execute procedures on
the RDBMS machine that are triggered by eventsin CRISP.

The BATCH_FILE> opcodeis used to specify the name of the command
procedure that is to be submitted. The value must be afull file
specification including device and directory. Thefile type must be
.COM. Thereisno default batch file.

(Continued on next page.)

[500 046-001

Datagate User's Guide | 51}

Configuring Datagate

Using DATAGATE To Submit Batch Jobs (cont)

The BATCH_QUE> opcode is used to specify the name of the batch queue
that DATAGATE isto use when submitting the file specified in
BATCH_FILE>. The default batch queueis SY S$BATCH.

The BATCH_PARAMETER_P*> opcodes are provided to allow usersto
pass parameters P1 through P8 to the command procedure.
BATCH_PARAMETER_P1 is used to specify P1, BATCH_PARAMETER P2
isused to specify P2, etc. Users may specify the value as an default
guoted string, or a CRISP string variable may be used. If aparameter is
not specified, itsvalueis™ ".

TheSUBMIT_BATCH_AND_CLR_IF> opcode specifies the name of the
crisp variable that isto be used as atrigger. When the value of the
variableistrue, DATAGATE submitsthe file specified in the
BATCH_FILE> opcode to the queue specified in the BATCH_QUE> opcode
with the parameters specified in the optional BATCH_PARAMETER_P*
opcodes. In addition, alog file with the same directory and file name as
the .coM file are created with an extension of .LOG.

BATCH FILE> ; "Dl SK$USER [RDB. REPORTS] END_OF BATCH. COM'
BATCH_QUE> . " SYS$BATCH'

BATCH_PARAMETER P1> ; "Y'

BATCH_PARAMETER P2> : " NONE"

BATCH PARAMETER P3> ; P3_STRI NG VAR ;

SUBM T_BATCH AND CLR | F> REPORTS VAR ;

Improving CPU Usage TheSET_MIN_TRANSACTION_TIME_TO> opcode determines the
minimum time the opcodes in alogical transaction are processed. This
isthe amount of time it takesto read all triggers, determine which sQL
statements are to be executed, read any CRISP variables necessary to
execute the SQL statements, execute the SQL statements, and write back
data to the CRISP database. The default value is 50 (centi-seconds) or
half asecond. If DATAGATE determines that |ess than half a second
has passed from the time it starts processing alogical transaction until
the end of that logical transaction isfound, then DATAGATE will
hibernate for the remaining period.

If users know that their DATAGATE application needs only read the
triggers once a minute, then the SET_MIN_TRANSACTION_TIME_TO>
opcode can be set to 6000. Lesstime critical applications can be set

accordingly.

[52| Datagate User's Guide 500 046-001]

Configuring Datagate

A Sample UCF for Rdb/VMS

FI LE NAVME: DGT_RDBVMS. UCF
LAST MODI FI CATI ON: 20-Jul -1990 10: 42
DESCRIPTION:. This is the actual UCF File used to test

parts of the Rdb/VMS inteface. It is
i ncl uded here for your conveni ence.

DEFI NI TI ON SECTI ON:

The definition section is used to interpret Custoner,
information. Al opcodes docunmented in this section
nmust be present in the UCF file in order for the

CRI SP/ PARSER to create the needed gl obal section
that is used by DATAGATE.

bEFI NE> I Keyword to start definition
I section specific processing.

|

|

|

! The Custoner opcodes nmust be present in the UCF.

! Verify all Custoner information for accuracy.

! CRI SP/ PARSER wi I | display information and errors

! regardi ng these opcodes. Wen custoner information
! is incorrect DATAGATE will be run in DEMO node.

|

CUSTOVER NAME>>
CUSTOVER_LOCATI ON>>
CUSTOVER_SW LI CENSE>>
CUSTOVER _USE_LI M T>>
CUSTOVER_CONFI G_CODE>>
CUSTOVER_CONFI G_| D>>

[500 046-001 Datagate User's Guide | 53]

Configuring Datagate

A Sample UCF for Rdb/VMS (cont)

I NI TI ALI ZATI ON SECTI ON

INIT, which is used to define val ues used by al

| ogi cal transactions.

|
|
!
! The initialization section begins with the opcode
|
|
|

RDBMVS_TYPE>

ZERO DATE>
!

TRANSACTI ON_TI MEQUT ACTI ON>

TRANSACTI ON_TI MEQUT>
!

!
SET_M N_TRANSACTI ON_TI ME_TO>

|

RDBVS_| DENT>

STRI NG NULL_DATA VALUE>
NUVERI C_NULL_DATA VALUE>
FLOAT NULL_DATA VALUE>

!
ADB_NCDE>
ADB_| DENT>

: RDBVMS I Rdb/ VB
:"13-Jun-1990" | For DATE/ LONG
I conversions

;. COWM T I on TI MEQUT

;. 3600 I TI MEQUT after
I 30 mn

;500 I WAIT 5 secs

; "Null String"

; -9999

; -999.99

;" AZVAX3" I CRI SP Node
; "TAGIST" I CRI SP ADB

" DUAO: [RDBUSER. RDBDEMO] PERSONNEL"

The SET_VAR TO opcodes

are used to initialize various

dat abase variables and triggers. The PUT_IF and

CRI SP data types of the other variables can be
determ ned by the second character of the variable
name where L is LONG and S is STRI NG

I
I
|
!
! GET_IF variables are all of type | NTERVED ATE.
I
I
I
|

The

Datagate User's Guide

500 046-001]

Configuring Datagate

A Sample UCF for Rdb/VMS (cont)

|

SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>
SET_VAR TO>

It

LOG CAL_TRANSACTI ON:

PROCESS SECTI ON:

mar ks the | ogi cal
and begi ns the process section.
used to define all
process with every |ogic scan.

RL11000
RL11001
RL11010
W511010
W511011
W511012
W.11000
W.11010
W.11011
GET_| F112
PUT_I F112
PUT_I F113

opcodes t hat

0
0
1

"Starting
"Starting
"Starting

cNololoNoNe]

The process section begins with the opcode PROCESS.

end of the definition section
This section is

DATAGATE is to

The LOG CAL_TRANSACTI ON opcode is used to mark a

| ogi cal

inthe file.
a | ogi cal

LOG CAL_TRANSACTI ON>

transacati on.

A COWMT or
transaction affects all
in the same | ogical
affect SQL statenents in other
transacti ons.

transacti on,

One DATAGATE process wil |l

ROLLBACK i ssued within

|
|
|
|
]
! be started for each LOGd CAL_TRANSACTI ON opcode
|
|
|
|
|
|

SQ statenents
but does not
| ogi cal

[500 046-001

Datagate User's Guide

[55]

Configuring Datagate

A Sample UCF for Rdb/VMS (cont)

Here is an exanple of reading several data types
out of Rdb/VMS into associ ated CRI SP vari abl es.
Informati on about a SQ. statenent starts follow ng
t he LOG CAL_TRANSACTI ON opcode and ends at the
EXECUTE type opcode. A new SQ statement starts
with the first opcode foll ow ng an EXECUTE type
opcode.

Notice in the followi ng exanple that the sane DATE
colum is selected twice, once into a CRISP STRI NG
variable and next into a CRISP LONG vari abl e.

ROW START> RL11010 ;

ROW_COUNT> -1

DI SPLAY_NEXT_ROW | NDEX_AT> RL11010 ;

DI SPLAY_END OF DATA AT> PUT | F112 :

DI SPLAY_SQL_DONE_AT> PUT_I F113 :

DI SPLAY_RDBMS_STATUS_AT> RL11000 ;

!

SQL_STATEMENT> © "SELECT LAST_NAME, FI RST_NAME, "

SQL_STATEMENT>
SQL_STATEMENT>
SQL_STATEMENT>
SQL_STATEMENT>
SQL_STATEMENT>
SQL_STATEMENT>
SQL_STATEMENT>

"SALARY_START, SALARY_START, "
" SALARY_AMOUNT"

"#W.11011, #W.11010"
" FROM CURRENT_SALARY"

"ORDER BY LAST_NANME; "

EXECUTE_AND CLR | F> GET_IF112 ;

When the last row is found (DI SPLAY_END OF DATA AT>),

a COWMT will be issued and this DATAGATE process
will exit.

COW T_AND CLR | F> PUT | F112 ;

PUT_I F112 ;

"I NTO #W511010, #W511011, #W511012,

"WHERE LAST_NAME STARTING WTH 'R "

[56 |

Datagate User's Guide

500 046-001]

Configuring Datagate

A Sample UCF for Rdb/VMS (cont)

| |
! Thi s next exanple takes sonme of the val ues read !
! fromthe above table and I NSERTs new rows into a !
! different table. Notice too, that the trigger for !
! this I NSERT statement is set by the !
! DI SPLAY_SQL_DONE_AT> opcode for the earlier SELECT !
! statenment and that when this | NSERT statenment !
! finishes, it sets the trigger so that the above !
! SELECT statenent retrieves its next row. !
| |
| |
| |
| |
| |
| |
| |
| |

Notice also that it does not matter if the
SQL_STATEMENT> opcodes are before the D SPLAY type
opcodes or not. A SQ statenent begins innmediately
foll owi ng the LOJ CAL_TRANSACTI ON opcode unti |

an opcode of EXECUTE type is found; then a new SQ
statenent starts.

SQL_STATEMENT> . "1 NSERT | NTO TEST_TABLE (NAME_COLUWN, "
SQL_STATEMENT> . "DATE_COLUWN, DOUBLE_COLUWN)"
SQL_STATEMENT> . "VALUES"

SQL_STATEMENT> "(#W511010, #W.11011, #W.11010);"

ROW COUNT> -1
DI SPLAY_SQL_DONE_AT> GET | F112 :
DI SPLAY_RDBVS_STATUS_AT> RL11001 -

!

EXECUTE_AND CLR | F> PUT | F113

ADD_TO_VAR> W.11000 ; 1

END SECTI ON

file. Any opcodes or coments declared after this
opcode are ignored by CRI SP/ PARSER

|
|
!
! The end section defines the |ogical end of the UCF
|
|
|

[500 046-001 Datagate User's Guide | 57|

Configuring Datagate

Notes:

[58| Datagate User's Guide 500 046-001]

Opcode Definitions

General The opcodes are defined herein aphabetical order. Unless otherwise
noted, the opcodeislegal in any of the User Configuration File (UCF)
sections defined previoudly.

+ Note:

The parameter valuesin the following definitions are

shown here as decimal values, and are included for use

with the Application Database (ADB) variable parameter.
It is not necessary to supply an opcode if the default parameter matches
your requirements.

ADB IDENT> Opcode which specifies the name or identity of the desired ADB. This
opcode MUST be used prior to any ADB variable reference, unless that
opcode includes an ADB ID name followed by acolon. The ADB variable
portion of the statement is currently not supported. If the default entry
isastring then it must be enclosed in double quotesin order to avoid
confusion with token definitions or absolute values.

Example: ADB_| DENT> ;" TRAIN1" ! Database name
Default: (Not supported)

ADB _NODE> Opcode which specifies the node where the ADB_IDENT> valueis
located. The ADB variable portion of the statement is not currently
supported. If the ADB_IDENT> opcode is found before an ADB_NODE>
opcode is found, then the node for that particular ADB_IDENT> will be
the node that DATAGATE isrunning on.

Example: ADB_NODE> ; "AzvAX2" | Nodefor TRAIN1 database
Default: Current Node

ADB_TYPE> Opcode which specifies the Applications Database type. Currently only
one type of ADB is supported. The ADB variable portion of the statement
is not currently supported.

Example: ADB_TYPE> ; CRISP32 ! type of database
Default: CRISP32
[500 046-001 Datagate User's Guide | 59 |

Opcode Definitions

ADD_TO_VAR>

Opcode which allows the user to add a predetermined value to an ADB
memory location. Generally used to increment a pass counter by adding
one at the top or bottom of the UCF, but will add any legal value
supplied on the right side of the semicolon, including both integer and
real values, aswell as any of the Tokens defined for any of the other
opcodes. Consult the ADB addendums for legal parameter values. The
opcode requires aCRISP variable. Regardless of the position of this
opcode in the UCF, the add will not take place until the end of alogical
transaction pass.

Example: ADD _TO VAR> pass_count; ! Count each pass
Default: 1

BIT_NULL DATA_VALUE>

BATCH_FILE>

BATCH_QUE>

Opcode which specifies the value to be written to an INTERMEDIATE
variablein the CRISP ADB in the event that a SQL SELECT statement
determines that the field in the relational database table associated with
the INTERMEDIATE variable has no data. If placed in the INIT> section,
the value will be valid for al logical transactionsin the UCF, otherwise,
there should only be one instance of this opcode per logical transaction.
On alogical transaction basis, thisis a One Shot opcode.

Example. BI T_NULL_DATA VALUE> ; 1
Default: O

This opcode enables the user to specify the name of acommand file
which will be submitted to a batch queue (specified by the BATCH_QUE>
opcode) when aCRIsP variable (specified by the
SUBMIT_BATCH_AND_CLR_IF> opcode) istrue. Thefull file
specification for thefile, including device and directory must be
included. In addition, the file specification must be in a quoted string.

Example. BATCH FILE> ; "D SK$USER [RDB. REPCRTS] END_OF_SHI FT. CGOM
Default: None

This opcode enables the user to specify the name of abatch queueto
which acommand file (specified by the BATCH_FILE> opcode) will be
submitted when a CRISP variable (specified by the
SUBMIT_BATCH_AND_CLR_IF> opcode) istrue. The name of the queue
must be in a quoted string.

Example: BATCH QUE> ; " REPORTSQUE"
Default: SYS$BATCH

[60 |

Datagate User's Guide 500 046-001]

Opcode Definitions

BATCH_PARAMETER_P1>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send aP1 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variableif desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P1> ; "Val ue of P1"
Default: " "

BATCH_PARAMETER_P2>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P2 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variableif desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P2> ; "Val ue of P2"
Default: " "

BATCH_PARAMETER_P3>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send aP3 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P3> ; "Val ue of P3"
Default: ™"

BATCH_PARAMETER_P4>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P4 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variableif desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P4> ; "Val ue of P4"
Default: " "

[500 046-001

Datagate User's Guide | 61|

Opcode Definitions

BATCH_PARAMETER_P5>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send aP5 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variableif desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P5> ; "Val ue of P5"
Default: ™"

BATCH_PARAMETER_P6>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P6 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variableif desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P6> ; "Val ue of P6"
Default: ™"

BATCH_PARAMETER_P7>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send aP7 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variableif desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P7> ; "Val ue of P7"
Default: " "

BATCH_PARAMETER_P8>

This opcode enablesis used in conjunction with the
SUBMIT_BATCH_AND_CLR_IF> opcode to send a P8 value to the
command procedure specified by the BATCH_FILE> opcode. This
opcode may have aCRISP variable if desired. If so, the variable must be
of CRISP string type.

Example: BATCH PARAMETER P8> ; "Val ue of P8"
Default: ™"

[62 |

Datagate User's Guide 500 046-001]

Opcode Definitions

CLEAR_STATUS_IF> Thisopcode must have aCRISP variable. When the value of the

variable is non-zero, both the primary and secondary status values are
set to zero. This opcode should be used in conjunction with the
PRIMARY_STATUS AT> and the SECONDARY_STATUS AT> opcodes to
aid application logic in handling error conditions.

Example. CLEAR STATUS | F> CLR STATUS ;

Default: None

COMMIT_AND_CLR__IF> Thisopcode must have acrisp variable. If the value of the

COMMIT_IF>

variable is non-zero, then a SQL coMMIT will be issued and the value
of the CRISP variable will be set to 0. The comMIT will affect the entire
logical transaction.

Examplee COW T_AND CLR | F> conmit _var ;

Default: None

It is strongly suggested that this opcode have a CRISP variable; if not, a
coMmMIT will beissued every pass of alogical transaction depending on
the default value. If the value of the variable is non-zero, then a
coMMIT will beissued. ThecomMmIT will affect the entire logical
transaction.

Example COW T_I F> comit_var ;

Default: None

CUSTOMER_CONFIG_CODE>

Opcode which specifies the customer's configuration code to
DATAGATE. Must be entered exactly as specified on your licensing
agreement. Must be specified before the process section, immediately
following the CUSTOMER_USE_LIMIT> opcode and immediately
preceding the CUSTOMER_CONFIG_ID> opcode in the DEFINE> section
of theUCF.

CUSTOMER_CONFIG_ID>

Opcode which specifies the customer's configuration identifier to
DATAGATE. Must be entered exactly as specified on your licensing
agreement. Must be specified before the process section, immediately
following the CUSTOMER_CONFIG_CODE> opcode in the DEFINE>
section of the UCF.

[500 046-001

Datagate User's Guide | 63]

Opcode Definitions

CUSTOMER_LOCATION>

Opcode which specifies the customer's configuration location to
DATAGATE. Must be entered exactly as specified on your licensing
agreement, enclosed in double quotes ("). Must be specified before
the process section, immediately following the CUSTOMER_NAME>
opcode and immediately preceding the CUSTOMER_SW_LICENSE>
opcode in the DEFINE> section of the UCF.

CUSTOMER_NAME> Opcode which specifies the customer's configuration name to
DATAGATE. Must be entered exactly as specified on your licensing
agreement, enclosed in double quotes ("). Must be specified before
the process section, immediately preceding the CUSTOMER_LOCATION>
opcode and immediately following the DEFINE> opcode in the UCF.

CUSTOMER_SW_LICENSE>

Opcode which specifies the customer's configuration software license
codeto DATAGATE. Must be entered exactly as specified on your
licensing agreement. Must be specified before the process section,
immediately following the CUSTOMER_LOCATION> opcode and
immediately preceding the CUSTOMER_USE_LIMIT> opcode in the
DEFINE> section of the UCF.

CUSTOMER_USE_LIMIT>

Opcode which specifies the customer's configuration use limit code to
DATAGATE. Must be entered exactly as specified on your licensing
agreement. Must be specified before the process section, immediately
following the CUSTOMER_SW_LICENSE> opcode and immediately
preceding the CUSTOMER_CONFIG_CODE> opcode in the DEFINE>
section of the UCF.

DEFINE> Opcode which designates the start of the definition section. All opcodes
in this section are automatically ‘one shot' regardless of the number of
right angle brackets supplied.

Example: DEFI NE> ! Begin definition section

Default: (No parameters)

[64] Datagate User's Guide 500 046-001]

Opcode Definitions

DISABLE_RDBMS_COMMAND>

Opcode specifying which of the RDBMS commands are to be disabled
and prevented from executing. If an RDBMS command has been
disabled, then any sQL statement found which begins with the command
will not be executed. Instead, an error will be generated. This opcode
may be placed in the Init Section or the Process Section.

Parameter Token

100 ALTER

101 COMMENT
102 CREATE
103 DELETE
104 DROP

105 GRANT
106 INSERT
107 REVOKE
139 SELECT
109 UPDATE

Example: DI SABLE_RDBVS_COVMAND> ; SELECT ! Disable SELECTSs

Default: ALTER, COMMENT, DELETE, DROP, GRANT, REVOKE and
UPDATE

DISPLAY_END_OF_DATA_AT>

This opcode only has meaning for SQL SELECT statements; it requires a
CRISP variable; any default value will be ignored. When the last row in
aquery has been returned, the DATAGATE will write avalue of 1 to the
variable, otherwise avalue of O will be written. Thisvalueisonly
written if there were no errorsin the SQL statement that was executed.
There may be one DISPLAY_END_OF DATA_AT> opcode per execute
type opcode (EXECUTE_IF>, EXECUTE_COMMIT_IF>,
EXECUTE_AND_CLR_IF>, Or EXECUTE_COMMIT_AND_CLR_IF>).

Example: DI SPLAY_END _OF DATA AT> ECD ; ! Endof data?

Default: Not applicable

[500 046-001 Datagate User's Guide | 65 |

Opcode Definitions

DISPLAY_MORE_DATA_AT>

This opcode only has meaning for SQL SELECT statements; it requiresa
CRISP variable; any default value will beignored. If thelast row ina
guery has not been returned, the DATAGATE will writeavalue of 1 to
the variable, otherwise, when the last row has been returned, a value of
O will bewritten. Thisvalueisonly written if there were no errorsin
the SQL statement that was executed. There may be one
DISPLAY_MORE_DATA_AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, Or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DI SPLAY_MORE_DATA AT> ECD ; ! Morerows?

Default: Not applicable

DISPLAY_NEXT_ROW_INDEX_AT>

This opcode only has meaning for SQL SELECT statements; it requiresa
CRISP variable; any default value will beignored. Itisusedin
conjunction with the ROW_START> opcode to easily retrieverowsin a
table by groups. For example, if the row start valueis 1, and the row
count valueis 5, DATAGATE will return rows 1 through 5 asfound in
the query. The next row index value of 6 will be written to the variable
associated with this opcode. When all rowsin a query have been
retrieved, the default value found for the ROW_START> opcode will be
written to the variable associated with this opcode. It is suggested that
the variable for the DISPLAY_NEXT_ROW_INDEX_AT> opcode and the
variable for the ROW_START> opcode be the same. Thisvaueisonly
written if there were no errorsin the SQL statement that was executed.
There may be one DISPLAY_NEXT_ROW_INDEX_AT> opcode per execute
type opcode (EXECUTE_IF>, EXECUTE_COMMIT_IF>,
EXECUTE_AND_CLR_IF>, Of EXECUTE_COMMIT_AND_CLR_IF>).

Example: DI SPLAY_NEXT_ROW | NDEX_AT>ROW START VAR ;

Default: Not applicable

[66 | Datagate User's Guide 500 046-001]

Opcode Definitions

DISPLAY_RDBMS_STATUS_AT>

This opcode provides users with a means to determine the RDBMS
specific status returned by the RDBMS when a SQL statement is
executed; it requiresaCRISP variable. Itisonly returned when the
statement is executed, that iswith the EXECUTE_IF>,

EXECUTE_CLR_IF>, EXECUTE_COMMIT_IF>, and the
EXECUTE_COMMIT_AND_CLR_IF> opcodes. (The statuswill not be
written for the COMMIT_IF> and ROLLBACK_IF> opcodes). For
Rdb/vMms, the value returned will be the value of RDB$LU_STATUS
which isreturned in the RDBSMESSAGE_VECTOR by SQL. The values of
RDB$LU_STATUSTollow the usual VAX/VMS standards for status values.
(See the Rdbyvms Guide to Using SQL for detailed information.) This
value iswritten regardless of whether any errors were found during
execution of the SQL statement. There may be one
DISPLAY_RDBMS_STATUS AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, Or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DI SPLAY_RDBVS_STATUS_AT> RDBMS_STATUS VAR ;

Default: Not applicable

DISPLAY_SQLCODE_AT>

This opcode provides users with a means to determine the SQL status
returned by the RDBMS when a SQL statement is executed; it requires a
CRISP variable. Itisonly returned when the statement is executed, that
iswith theEXECUTE_IF>, EXECUTE_CLR_IF>, EXECUTE_COMMIT_IF>,
and theEXECUTE_COMMIT_AND_CLR_IF> opcodes. (The statuswill not
be written for the COMMIT_IF> and ROLLBACK_IF> opcodes). The
value returned will be the SQLCODE value for the particular RDBMS.
While exact values are RDBMS specific, in general, avalue of 0 means
success, a positive value isawarning or exception condition, and a
negative valueisan error. Thisvalueiswritten regardless of whether
any errors were found during execution of the sQL statement. There
may be one DISPLAY_SQLCODE_AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, Or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DI SPLAY_SQLCODE_AT> SQLCODE_VAR ;

Default: Not applicable

[500 046-001 Datagate User's Guide | 67|

Opcode Definitions

DISPLAY_SQL_DONE_AT>

This opcode must have aCRISP variable. DATAGATE will writea
value of 1to the variable when a SQL statement is finished executing.
Users may use thisfeature to "chain" SQL statements, that isto trigger
SQL statement 2 when SQL statement 1 isfinished. Thisvalueisonly
written if there were no errorsin the SQL statement that was executed.
There may be one DISPLAY_SQL_DONE_AT> opcode per execute type
opcode (EXECUTE_IF>, EXECUTE_COMMIT_IF>,
EXECUTE_AND_CLR_IF>, Or EXECUTE_COMMIT_AND_CLR_IF>).

Example: DI SPLAY_SQL_DONE_AT> NEXT_TRI GGER VAR ;

Default: None

DISPLAY_TOTAL _ROWS_AT>

This opcode only has meaning for SQL SELECT statements; it requiresa
CRISP variable; any default value will beignored. DATAGATE will
write the total number of rows written for asingle query. For instance,
the user requests all rowsin atable, 5 at atime. After the first execution
of the query, avalue of 5iswritten to the DISPLAY_TOTAL_ROWS _AT>
variable; after the second execution, avalue of 10 iswritten. This
continues until the last row isfound. Thisvalueisonly written if there
were no errors in the SQL statement that was executed. There may be
oneDISPLAY_TOTAL_ROWS_AT> opcode per execute type opcode
(EXECUTE_IF>, EXECUTE_COMMIT_IF>, EXECUTE_AND_CLR_IF>, Or
EXECUTE_COMMIT_AND_CLR_IF>).

Example: DI SPLAY_TOTAL_ROWS_AT> TOTAL_ROAS_VAR ;

Default: Not applicable

[68 |

Datagate User's Guide 500 046-001]

Opcode Definitions

ENABLE_RDBMS_COMMAND>

Opcode which specifies which of the RDBMS commands are to be
enabled and allowed to execute. Unless an RDBMS command has been
enabled, any sQL statement found which begins with the command will
not be executed. Instead, an error will be generated.

Parameter Token

100 ALTER

101 COMMENT
102 CREATE
103 DELETE
104 DROP

105 GRANT
106 INSERT
107 REVOKE
139 SELECT
109 UPDATE

Example. ENABLE_RDBVS_COVMAND> ; CREATE ! Enable CREATES

Default: INSERT and SELECT

END> Opcode which signifies the end of the UCF file, and thus the end of the
logical process path. Anything following this opcode is ignored.

Examplee END> ! End of processing

Default: (No parameters)

EXECUTE_AND_CLR_IF>

This opcode requires a CRISP variable; any default value found will be
ignored. The variable associated with this opcodeis called a“trigger”
variable. When its value is non-zero, the associated SQL statement will
be executed. If no errors are found during execution, DATAGATE will
then change the value of the variable to zero.

Example: EXECUTE_AND CLR | F> EXECUTE_VAR ;

Default: None

[500 046-001 Datagate User's Guide | 69 |

Opcode Definitions

EXECUTE_COMMIT_AND_CLR_IF>

This opcode requires a CRISP variable; any default value found will be
ignored. The variable associated with this opcodeis called a'trigger’
variable. When itsvalue is non-zero, the associated sQL statement will
be executed. If no errors are found during the execution, a SQL
comMMIT will beissued and DATAGATE will then change the value of
the variable to zero.

Example. EXECUTE_COMM T_AND CLR | F> EXECUTE_VAR ;

Default: None

EXECUTE_COMMIT __IF> Itisstrongly suggested that this opcode have a CRISP variable.

EXECUTE_IF>

EXIT_IF>

If s0, the variable associated with this opcode is called a 'trigger'
variable. When its value is non-zero, the associated SQL statement will
be executed. If no errors are found during the execution, a SQL
COMMIT will beissued.

Example: EXECUTE_COMM T_I| F> EXECUTE_VAR

Default: None

It is strongly suggested that this opcode have a CRISP variable. If so,
the variable associated with this opcode is called a"trigger” variable.
When its value is non-zero, the associated SQL statement will be
executed.

Example: EXECUTE_| F> EXECUTE_VAR;

Default: None

Opcode for user to supply an ADB variable or adefault value, which will
allow aconditional exit, on aLogica Transaction basis. A manual
restart will be required after such an exit. Legal values are zero (0) and
non-zero. Any supplied default value isonly used if no ADB variable
name is supplied or if, for some reason, the system is unable to access
the ADB variable. Since anon-zero value will forcethe DATAGATE
task to exit, not supplying an ADB variableis usually not meaningful.

Example EXIT_IF> EXIT_1; ! DATAGATE to exit?
Default: 0O

[70]

Datagate User's Guide 500 046-001]

Opcode Definitions

FLOAT NULL_DATA_VALUE>

INIT>

Opcode which specifies the value to be written to aFLOAT variablein
the CRISP ADB in the event that a SQL SELECT statement determines that
thefield in the relational database table associated with the FLOAT
variable has no data. If placed in the INIT> section, the value will be
valid for al logical transactionsin the UCF, otherwise, there should only
be one instance of this opcode per logical transaction. On alogica
transaction basis, thisis a One Shot opcode.

Example; FLOAT NULL_DATA VALUE> FLOAT_NULL_VAR ;

Default: -999.0

Optiona opcode which designates the start of the initialization section.
All opcodes in this section are automatically "one shot" regardless of the
number of right angle brackets supplied.

Example: | NI T> ! Begininitialization section

Default: (No parameters)

LOGICAL_TRANSACTION>

Opcode which specifies the start of alogical transaction. One
DATAGATE process will be started for each LOGICAL_TRANSACTION>
opcode located in the UCF. At least one LOGICAL_TRANSACTION>
opcode must be located.

Example: LOG CAL_TRANSACTI ON> ! Begin alogical transacation

Default: (No parameters)

NULLS CHECKING> Opcodeusedif NULL values are to be written to the relational

database. Tokens of ON and OFF are provided.

When NULLS checking is ON, DATAGATE compares the value found in
Crisp to the null data value for that datatype. If the values match, then a
NULL iswritten to the relational database. (Null datavalues are defined
using the STRING_NULL_DAT VALUE>,

NUMERIC NULL_DATA_VALUE>, FLOAT NULL _DATA_VALUE>, and
BIT_NULL_DATA_VALUE> opcodes.)

If NULLS checking is OFF, then no comparisons are made and the value
found in Crisp iswhat iswritten to the relational database.

Example: NULLS_CHECKI NG> ; ON
Default: OFF.

[500 046-001

Datagate User's Guide | 71}

Opcode Definitions

NUMERIC_NULL_DATA_VALUE>

Opcode which specifies the value to be written to aNUMERIC or LONG
variable in the CRISP ADB in the event that a SQL SELECT statement
determines that the field in the relational database table associated with
the NUMERIC or LONG variable hasno data. If placed in the INIT>
section, the value will be valid for dl logical transactionsin the UCF,
otherwise, there should only be one instance of this opcode per logical
transaction. On alogical transaction basis, thisis a One Shot opcode.

Example; NUMVERI C_NULL_DATA VALUE> ; -99

Default: -999.0

PRIMARY_STATUS AT>

There may be exactly one instance of this opcode per Logical
Transaction. At the end of each pass, DATAGATE writes the current
process status to the CRISP variable that is named with this opcode.
While this opcode is not required, it is strongly recommended that this
opcode be used. Application logic may then be written to handle error
conditions. A value of 0 signifiesthat no error condition has been
encountered. PRIMARY_STATUS AT> may be used in conjunction with
SECONDARY_STATUS_AT> and CLEAR_STATUS IF> to determine
reasons for errors. For more detailed information, refer to the
appropriate sections of thismanual. The following table shows the
valuesthat DATAGATE will write to the primary status variable.

Status Vaue Meaning of error

0 No Error Occurred

100 Batch Job Error

125 RDBMS COMMAND> Error

150 A CRISP _ - > RDBMS Data Type Conversion Error

175 Invalid Date String Located in ZERO_DATE>

200 DATAGATE Exited

225 Verson Mismatch Error; DATAGATE Exited

250 Relational Database Not L ocated

275 A sQL Statement Was Not Executed

300 RDBMS TYPE> Not Located

325 SQL Statement Parse Error

350 Error in Reading From CRISP

375 RDBMS SQL Error

400 Error in Clearing a Trigger

425 VMS Error

450 WORF Error

475 Error in Writing to CRISP
Example: PRI MARY_STATUS_AT> DATAGATE_STATLUS ;
Default: None.

[72 Datagate User's Guide 500 046-001]

Opcode Definitions

PROCESS> Opcode which signifies the start of the process section. Unless
otherwise specified, by the use of two right angle brackets, al opcodes
following this opcode are done each pass.

Example: PROCESS> ! Begin process section

Default: (No parameters)

RDBMS IDENT> For Rdb/vMs this opcode specifies the name of the relational database
that DATAGATE isto use. Thisopcode may NOT specify aCRISP
variable. The vaue of this opcode must be afull file specification which
can contain only those logicals in the system table. The value must be
enclosed in double quotes. The file extension should be omitted. There
is no default value; this opcode is required.

Example: RDBVS_ | DENT> ; " DUAO: [DATABASE] PERSONNEL"

Default: None

RDBMS_TYPE> This opcode specifies the Relationa Database Management System
(RDBMS)product (ie, Rdb/vMs, Oracle, Ingres) that the user has on his
system. If used, this opcode may not specify a CRISP variable.
Currently, Rdb/vMs is the only RDBMS implemented.

Parameter Token

100 RDBVMS
200 ORACLE
300 INGRES

Example: RDBMS_TYPE> ; ORACLE

Default: RDBVMB

ROLLBACK_AND_CLR_IF>

This opcode requires a CRISP variable; any default value will be
ignored. When the value of the variable is non-zero, a SQL
ROLLBACK statement will beissued. If no errors are found, the
variable will be set to zero. In generd, it is expected that

this opcode will be useful in handling error conditions.

Example: ROLLBACK_AND CLR | F> ERROR VAR ;

Default: None

[500 046-001 Datagate User's Guide | 73]

Opcode Definitions

ROLLBACK_IF>

ROW_COUNT>

ROW_START>

This opcode requires a CRISP variable; any default value will be
ignored. When the value of the variableis non-zero, a SQL ROLLBACK
statement will beissued. In generdl, it is expected that this opcode will
be useful in handling error conditions.

Example. ROLLBACK | F> ERROR VAR ;

Default: None

This opcode is useful when performing SQL INSERT and SELECT
statements. Itsvalue (either from avariable, or using the default) is
used in conjunction with CRISP arrays. Rather then writing the same
INSERT statement five timesin the UCF, where the only difference from
one INSERT statement to the next isthe array index (i.e., ARRAY(0),
ARRAY (1), ARRAY(2), ARRAY (3), ARRAY (4)), the user may write the first
element of the array in the INSERT statement (ARRAY[0]), and then
specify arow count value of 5. DATAGATE will then take 5 values
starting with the element specified in the SQL statement and create 5
rows to store in theRDBMS database. With SELECT statements, the user
can again retrieve more than one row at atime, by using the
ROW_COUNT> opcodeto tell DATAGATE how many array elements are
available to hold rows returned from the query. Any value for this
opcode will be ignored unlessits associated SQL statement is either an
INSERT Or a SELECT.

Examples ROW COUNT> ROW COUNT_VAR ;

Default: 1

This opcode is used in conjunction with the ROW_COUNT> opcode when
retrieving multiple rows in the same SQL SELECT query. For instance,
suppose there are 100 rows in atable, but you only have room for 5 of
them in the CRISP database. Specify Row Count as 5 (how much room
isin the database) and Row Start as 1 (meaning, return to me 5 rows
starting with row 1). Thisreturnsrows 1to 5 inthetable. Now,
change the Row Start to 6 and set the trigger associated with the SQL
statement. DATAGATE will now return 5 rows starting at row 6 (i.e.,
rows 6 to 10). Usethisopcode in conjunction with the
DISPLAY_NEXT_ROW_INDEX_AT> opcodeto easily "scroll" through all
rowsin atable. (Make sure however, that DATAGATE does not issue
aCOMMIT or ROLLBACK until al data has been returned.)

Example: ROW START> ROW START VAR ;

Default: 1

[74|

Datagate User's Guide 500 046-001]

Opcode Definitions

SECONDARY_STATUS AT>

Thisopcodeis used in conjunction with PRIMARY _STATUS AT>
and CLEAR_STATUS IF> to aid application logic in determining
DATAGATE erors. A vaue of 0 meansthat no error has occurred.
The value that DATAGATE writes to the Secondary Status variableis
dependant on the value of the Primary Status. Refer to the appropriate
sections of this manual for more information.

Example. SECONDARY_STATUS_AT> SECONDARY_STATUS ;
Default: None.

SET_MIN_TRANSACTION_TIME_TO>

Opcode which sets the Minimum Transaction Time on a Logical
Transaction basis. The Mimimun Transaction Timeis the minimum
amount of time that asingle DATAGATE process must take to perform
itsown Logical Transaction. If, after all SQL statement triggers are
read, and any SQL statements executed, the elapsed timeislessthan this
value, the DATAGATE process will delay for the remaining time. The
Minimum Transaction Time is always specified in centi-second units
(1/100 of asecond). A value of O will disablethisfeature. Thisfeature
will aid usersin monitoring the CPU usage on theRDBMSVAX. The
supplied default value is 50 (or /2 a second).

Example: SET_M N_TRANSACTI ON_TI ME_TO> ; 3600 ! Oneminute
Default: 50 (1/2 second)

SET_VAR_TO> Opcode which allows the user to place a predetermined value into an
ADB variable location. Generally used to clear status or edge trigger
controls. Will accept both integer and real values, as well as any of the
Tokens defined for any of the other opcodes. Certain ADB supports
may require specific memory types or locations. Consult the ADB
addendums for legal parameter values. Also consult the Token
Definition Addendum, and any Opcode Definitions allowing for tokens.

Example: SET_VAR TG> P_COUNT; 73 ! PASS COUNT setto 73
Default: O

[500 046-001 Datagate User's Guide | 75|

Opcode Definitions

SQL_STATEMENT> Opcode used to actualy state what SQL statement isto be executed. The
SQL statement may be found in the default string, or in a CRISP variable.
When possible, put thesQL statement in the default string, because
taking SQL statements from CRISP variablesis slower and has a higher
overhead. Only put SQL statementsin CRISP variables when the query
must be "adhoc”. For known data transfers, use the default string.
Because sQL statementsin genera aretoo long to fit on asinglelinein
the UCF, multiple consecutive SQL_STATEMENT> opcodes are allowed.
DATAGATE will continue parsing the values found for the
SQL_STATEMENT opcodes until a semi-colon (;) terminator isfound as
the last character in either a CRISP variable or the default string. This
semi-colon should not be confused with the semi-colon separating the
CRISP variable from the default value in the opcode syntax. Notein the
exampl e that the # precedes the names of the CRISP variables whose
values are to be placed in the SQL statement at execution time.

Example; SQL_STATEMENT> ; "1 NSERT | NTO EMPLOYEES"
SQL_STATEMENT> ; "(LAST_NAME, FI RST_NAME) "
SQL_STATEMENT> ; " VALUES"

SQL_STATEMENT> ; "(#LAST VAR #FIRST_VAR);"

Defaullt: None

STRING_NULL _DATA_VALUE>

Opcode which specifies the value to be written to a STRING variablein
the CRISP ADB in the event that a SQL SELECT statement determines that
thefield in the relational database table associated with the STRING
variable has no data. If placed in the INIT> section, the value will be
valid for al logical transactionsin the UCF, otherwise, there should only
be one instance of this opcode per logical transaction. On alogical
transaction basis, thisis a One Shot opcode.

Example: STRING NULL_DATA VALUE> ; "Nul | Data Found"

Default: ™" (A zero length string)

SUBMIT_BATCH_AND_CLR_IF>

This opcode requires a CRISP variable; any default value found will be
ignored. When the value of this variable is non-zero, the command
procedure (specified by the BATCH_FILE> opcode) will be submitted to a
batch queue (specified by the BATCH_QUE> opcode) with alog file with
the same name as the batch file with an extension of . LOG.

Example: SUBM T_BATCH_AND_CLR | F> END_OF_SHI FT_VARI ABLE ;

Default: None

[76| Datagate User's Guide 500 046-001]

Opcode Definitions

TIMEOUT>

Opcode which specifies how long DATAGATE will wait until a default
COMMIT or ROLLBACK will beissued. Normally, userswill use the
EXECUTE_COMMIT_IF> or EXECUTE_COMMIT_AND_CLR_IF> opcodes
to execute a SQL statement and then issue acommit. However, users
may also use the EXECUTE_IF> and EXECUTE_AND_CLR_IF> opcodesin
which acase aCOMMIT isnot automatically issued. Also, if the
execution of a SQL statement fails, acoMmIT will not be issued even if
the EXECUTE_COMMIT_IF> or EXECUTE_COMMIT_AND_CLR_IF>
opcodes were used. Once a SQL statement is executed, the RDBMS puts
locks on tables and rows according to the type of SQL statement. Itis
not good relational database practice to leave the database in this
condition for long periods of time. This opcode gives the user the
flexibility to state exactly how long from the start of a SQL statement
DATAGATE will wait before issuing either aCOMMIT or a ROLLBACK.
TheTIMEOUT valueisin units of seconds. The default value is 3600
seconds (30 minutes).

Example TI MEQUT> ; 300 ! Timeout after 5 minutes

Default: 3600 (30 minutes)

[500 046-001

Datagate User's Guide | 77 |

Opcode Definitions

TIMEOUT_ACTION> Thisopcode gives the user the ability to specify which command

ZERO_DATE>

(COMMIT or ROLLBACK) DATAGATE will issueif the timeout
described in TIMEOUT> occurs. The default action is ROLLBACK.

Parameter Token
100 COMMIT
200 ROLLBACK

Example: TI MEOUT_ACTION> ; COWM T

Default: ROLLBACK

Thisopcodeisonly useful if userswill be retrieving RDBMS DATE
values and writing them to CRISP LONG variables or viceversa. An
RDBMSDATE to CRISP LONG conversion involves taking the DATE value
and converting it to the number of seconds since the zero date. A

default date of "01-APR-1970 00: 00: 00.00" has been provided. If a
CRISP variableisused in the ZERO_DATE> opcode, it must be of type
STRING. Also, the data contained in the string must be in the VAX date
format of

"DD-MON-YYYY HH:MM:SS.SS"
If any portion of the VAX date string is missing, then the values from the
default string will be used. For example, if the user wishes the zero
date to be "14-DEC-1970 00:00:00.00", the string need only contain the
vaue "14-DEC"
Example: ZERO DATE> ; "01- JAN-1990 12:00: 00. 00"

Default: "01- APR- 1970 00: 00: 00. 00"

[78]

Datagate User's Guide 500 046-001]

Token Definitions

General

The keywords (called tokens), which may be used in place of literd
numeric values, are listed herein first aphabetical, and then numerical
order. Refer to the specific opcode for more details. Thislisting is

meant merely as asummary of the tokensthat are legal with the various
opcodes.

+ NOTE:

The ADD_TO_VAR>and SET_VAR_TO> opcodes may use
any token.

[500 046-001

Datagate User's Guide | 79|

Token Definitions

Token Definitions - Alphabetical List

Token Val ue Opcode(s)

ALTER 100 ENABLE_RDBMsS_COWVAND>
DI SABLE_RDBMS_COVIVAND>

COMVENT 101 ENABLE_RDBMS_COWVWAND>
DI SABLE_RDBMS_COVIVAND>

cow T 100 TI MEQUT_ACTI ON>

CRI SP32 0 ADB TYPE>

CREATE 102 ENABLE_RDBMS_COVWAND>
DI SABLE_RDBMS_COVIVAND>

DELETE 103 ENABLE_RDBMsS_COWVAND>
Dl SABLE_RDBMS_COVVAND>

DROP 104 ENABLE_RDBMS_COVWVAND>
DI SABLE_RDBMS_COVIVAND>

GRANT 105 ENABLE_RDBMS_COWVAND>
Dl SABLE_RDBMS_COVVAND>

| NGRES 300 RDBMs_TYPE>

| NSERT 106 ENABLE_RDBMsS_COWVVAND>
DI SABLE_RDBMS_COVIVAND>

RDBVMS 100 RDBMsS_TYPE>

REVOKE 107 ENABLE_RDBMS_COVWVAND>
DI SABLE_RDBMS_COVIVAND>

ROLLBACK 200 TI MEQUT_ACTI ON>

SELECT 139 ENABLE_RDBMS_COWWAND>

DI SABLE_RDBMS_COVVAND>
UPDATE 109 ENABLE_RDBMS_COVVAND>
DI SABLE_RDBMS_COVVAND>

[80| Datagate User's Guide 500 046-001]

Token Definitions

Token Definitions - Numerical List

Token Val ue
CRI SP32 0
ALTER 100
COWM T 100
RDBVIVG 100
COMVENT 101
CREATE 102
DELETE 103
DROP 104
GRANT 105
| NSERT 106
REVCKE 107
UPDATE 109
SELECT 139
ROLLBACK 200
| NGRES 300

ENABLE_RDBMs_COVIVAND>
DI SABLE_RDBMS_COMVAND>

ENABLE_RDBMS_COVVAND>
DI SABLE_RDBMS_COVIVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBNMS_COVVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBMS_COVIVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBNMS_COVVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBMS_COVIVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBNMS_COVVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBMS_COVIVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBMS_COVVAND>
ENABLE_RDBMS_COVVAND>
DI SABLE_RDBMS_COVIVAND>

[500 046-001

Datagate User's Guide

[81|

Token Definitions

Notes:

[82 |

Datagate User's Guide

500 046-001]

Status and Error Reporting

General

Each DATAGATE process maintains two process-wide values. Primary
Status and Secondary Status. These two values are initialized to O when
the DATAGATE process starts, and remain O unless an erro occurs.
When an error occurs, both values are updated according to the type of
error condition detected and are not updated again until another error
condition occurs, or the user specifically clears them using the
CLEAR_STATUS_IF> opcode.

DATAGATE writes these values to the specified application database if
the PRIMARY_STATUS AT> and/or SECONDARY_STATUS AT> opcodes
areincluded inthe UCF. Based on the valuesthat DATAGATE returns
to the CRISP variables, gpplication logic may respond to DATAGATE
errors. Once an error has been handled by the CRISP application, the
DATAGATE status values may be cleared.

In addition to the process-wide status values, DATAGATE will report
SQL erroson asqQL statement basis. Each time asSQL statement is
executed, DATAGATE writes requested values back to aCRISP
database. The user may request the SQLCODE value (viathe
DISPLAY_SQLCODE_AT> opcode) and/or the RDBMS specific status (via
the DISPLAY_RDBMS STATUS AT> opcode). These valueswill change
only when atrigger goes from falseto true.

Regardless of whether status values are written to the CRISP application
database, DATAGATE signals both informational and error messages.
For DATAGATE batch processes, these messages are located in the
DATAGATE logfile. If DATAGATE isrunning on aCRISP VAX, these
messages are aso signalled to the CRISP console.

Primary Status Code Thefollowingisalist of implemented Primary Status codes and

their
Definitions definitions.

Code Definition

100 BATCH_ERROR - An error was found when attempting to submit
abatch job. The Secondary Status value will be
FILE_NOT_FOUND oOr FILE_TYPE.

112 BOGUS TRIGGER - An EXECUTE type opcode was found with no
corresponding SQL_STATEMENT opcode. The Secondary Status
valueisan index into the UCF.

125 COMMAND_ERROR - Aninvalid value was found for the
ENABLE_RDBMS COMMAND> or the
DISABLE_RDBMS COMMAND> opcodes. The Secondary Status
valueisan index into the UCF.

(Continued on next page.)
[500 046-001 Datagate User's Guide | 83]

Status and Error Reporting

Primary Status Code Definitions (cont)

Code Definition

137

150

175

200

225

250

275

300

325

350

367

COMMIT_ERROR - An error occured while issuing a COMMIT.
In this case, the Secondary Status is the SQLCODE value.

CONVERSION_ERROR - A data type conversion error was
detected when attempting to convert from the RDBMS to CRISP
or viceversa. The Secondary Status value is an index into the
UCF.

DATE_ERROR - Aninvalid date string was detected for the
ZERO_DATE> opcode or an error occurred when an attempt was
made to read/write aDATE column in the relational database.
The Secondary Status value is an index into the UCF.

EXIT - Thisvaue will be written when the DATAGATE process
exits, but only if the Primay Status valueis 0. The Secondary
Status value will aso be EXIT, but only if the Secondary Status
valueisO.

MISMATCH - The number of CRISP variables did not match the
number of relational database columnsin asqQL statement. The
Secondary Status valueis an index into the UCF.

NO_DATABASE - DATAGATE was unable to locate the specified
relational database. In this case, the Secondary Statusisthe
SQLCODE value.

NO_EXECUTE - Dueto errors, asqQL statement was not executed.
The Secondary Status value is an index into the UCF.

NO_INIT - DATAGATE attempted RDBMS calls before the
RDBMS _TYPE> opcode was located. Make sure that the

RDBMS _TYPE> opcodeislocated in the UCF before the
RDBMS_INDENT> opcode and any SQL_STATEMENT> opcodes.
The Secondary Status value is an index into the UCF.

PARSE_ERROR - An error was detected when parsing a sQL
statement. The Secondary Status value is an index into the UCF.

READ_ERROR - An error was detected when reading CRISP
database trigger or when reading data to be placed in a sQL
statement. Secondary Status values will be NO_DB, NO_NODE,
NO_VARIABLE, or OTHER.

ROLLBACK_ERROR - An error occurred whileissuing a
ROLLBACK. Inthiscase, the Secondary Statusisthe SQLCODE
value.

(Continued on next page.)

Datagate User's Guide 500 046-001]

Status and Error Reporting

Primary Status Code Definitions (cont)

375

400

412

425

450

475

SQL_ERROR - TheRDBMS returned an error following execution
of asqQL statement. The Secondary Status value is an index into
the UCF.

SYMBOL_WRITE_ERROR - An efror was detected when clearing a
trigger. The Secondary Status value is an index into the UCF.

TRANSACTION_ERROR - Internal error. Contact CRISP
Automation Systems. The Secondary Status will contain avalue
to be reported.

VMS_ERROR - An unexpected VMS error was detected. In this
case, the Secondary Status value will be the VMS status value
unless the problem is Insufficent Memory in which case the
value will be INSFMEM.

WORF_ERROR - An unexpected WORF error was detected. The
Secondary Status value will be the WORF status value.

WRITE_ERROR - An error was detected when performing CRISP
database writes. Secondary Status values will be NO DB,
NO_NODE, NO_VARIABLE, or OTHER.

Secondary Status Code Thefollowingisalist of implemented Secondary Status codes

and their
Definitions definitions.

Code Definition

1000 FILE_NOT_FOUND - Thefile specified in the BATCH_FILE>
opcode was not located.

1025 FILE TYPE - Thefile specified in the BATCH_FILE> opcode was
not of type. com

1050 INSFMEM - DATAGATE hasinsufficient memeory.
DATAGATE will exit.

1075 NO_DB - CRISP database not located.

1100 NO_NODE - CRISP node not located.

1125 NO_VARIABLE - CRISP variable not located.

1150 OTHER - Something besides NO_DB, NO VARIABLE, and
NO_NODE.

[500 046-001 Datagate User's Guide | 85|

Status and Error Reporting

RDBMS Status Code Statuscodesinthe DATAGATE product are those of the users
Relational

Definitions Database Management System of choice. These codes will be returned
to the ADB through the DISPLAY_SQLCODE_AT> and
DISPLAY_RDBMS STATUS AT> opcodes.

TheDISPLAY_SQLCODE_AT> opcode cause the RDBMS value of
SQLCODE to bereturned. While a SQLCODE vaueitsdf iSRDBMS
specific, in general, a SQLCODE value of 0 means success; a positive
valueisawarning; anegative valueisan error. For more detailed
information, refer to the values in the RDBMS documentation.

For Rdo/VMS the DISPLAY_RDBMS_STRING_AT> opcode causes the
value of RDB$MESSAGE_VECTOR to be written to the specified variable.
For more detailed information refer to the Rdb/VMS Guide to Using SQL.

[86| Datagate User's Guide 500 046-001]

Glossary

General Following are explanations to technical terms, acronyms, and
mnemonics used throughout this document.

ADB Application Database -- a database, for example the CRISP
database
Opcode Operation Code, the function to perform

RDBMS Relational Database Management System. A generic term
for arelational database product.

SQL Structured Query Language
Token Keyword, predefined value
UCF User Configuration (or Control) File

[500 046-001 Datagate User's Guide | 87|

Glossary

Notes:

[88|

Datagate User's Guide

500 046-001]

	Cover
	Title
	Contents
	Introduction
	Operation
	General
	Product Design Philosophy
	CRISP VAX Implementation

	Installing DATAGATE
	General
	Software Installation
	DGT Installation
	WORF Installation

	Configuring DATAGATE
	Configuring on a CRISP VAX
	Configuring on a non-CRISP VAX

	Starting DATAGATE
	Stopping DATAGATE

	Configuring Datagate
	General
	Using DATAGATE
	CRISP Communications Package
	User Configuration File (UCF)

	SQL Statements
	Writing To A Relational Database
	Reading From A Relational Database
	A DATAGATE Logical Transaction

	UCF Design
	The DATAGATE Opcodes
	UCF Summary

	DATAGATE Triggers
	CRISP Variable Syntax
	DATAGATE And SQL Statements
	How To Do A SQL INSERT
	How To Do A SQL UPDATE
	How To Do A SQL DELETE
	How To Do A SQL SELECT
	Retrieving A Single Row
	Retrieving Multiple Rows

	Adhoc SQL
	Retrieving Data From Multiple CRISP Databases

	NULL Data
	Supported Data Types
	DATAGATE DATE Functions
	Using CRISP Arrays
	ROW_COUNT> And The SQL INSERT Statement
	ROW_COUNT>, ROW_START> And The SQL SELECT Statement
	Combining Arrays And Single Values

	Using DATAGATE To Submit Batch Jobs
	Inproving CPU Usage
	A Sample UCF for Rdb/VMS

	Opcode Definitions
	General
	ADB_IDENT>
	ADB_NODE>
	ADB_TYPE>
	ADD_TO_VAR>
	BIT_NULL_DATA_VALUE>
	BATCH_FILE>
	BATCH_QUE>
	BATCH_PARAMETER_P1>
	BATCH_PARAMETER_P2>
	BATCH_PARAMETER_P3>
	BATCH_PARAMETER_P4>
	BATCH_PARAMETER_P5>
	BATCH_PARAMETER_P6>
	BATCH_PARAMETER_P7>
	BATCH_PARAMETER_P8>
	CLEAR_STATUS_IF>
	COMMIT_AND_CLR_IF>
	COMMIT_IF>
	CUSTOMER_CONFIG_CODE>
	CUSTOMER_CONFIG_ID>
	CUSTOMER_LOCATION>
	CUSTOMER_NAME>
	CUSTOMER_SW_LICENSE>
	CUSTOMER_USE_LIMIT>
	DEFINE>
	DISABLE_RDBMS_COMMAND>
	DISPLAY_END_OF_DATA_AT>
	DISPLAY_MORE_DATA_AT>
	DISPLAY_NEXT_ROW_INDEX_AT>
	DISPLAY_RDBMS_STATUS_AT>
	DISPLAY_SQLCODE_AT>
	DISPLAY_SQL_DONE_AT>
	DISPLAY_TOTAL_ROWS_AT>
	ENABLE_RDBMS_COMMAND>
	END>
	EXECUTE_AND_CLR_IF>
	EXECUTE_COMMIT_AND_CLR_IF>
	EXECUTE_COMMIT_IF>
	EXECUTE_IF>
	EXIT_IF>
	FLOAT_NULL_DATA_VALUE>
	INIT>
	LOGICAL_TRANSACTION>
	NULLS_CHECKING>
	NUMERIC_NULL_DATA_VALUE>
	PRIMARY_STATUS_AT>
	PROCESS>
	RDBMS_IDENT>
	RDBMS_TYPE>
	ROLLBACK_AND_CLR_IF>
	ROLLBACK_IF>
	ROW_COUNT>
	ROW_START>
	SECONDARY_STATUS_AT>
	SET_MIN_TRANSACTION_TIME_TO>
	SET_VAR_TO>
	SQL_STATEMENT>
	STRING_NULL_DATA_VALUE>
	SUBMIT_BATCH_AND_CLR_IF>
	TIMEOUT>
	TIMEOUT_ACTION>
	ZERO_DATE>

	Token Definitions
	General
	Token Definitions - Alphabetical List
	Token Definitions - Numerical List

	Status and Error Reporting
	General
	Primary Status Code Definitions
	Secondary Status Code Definitions
	RDBMS Status Code Definitions

	Glossary

